Paper / Subject Code: 32226 / Department Optional Course-I: Data Compression and Cryptography

1T01035 - T.E.(Electronics and Telecommunication)(SEM-V)(Choice Based) (R-19) (C Scheme) / 32226 - Department Optional Course-I: Data Compression and Cryptography QP CODE: 10030348 DATE: 02/06/2023

[Max Marks:80]

Duration: 3hrs

	N.B.	•) Question No 1 is Compulsory.) Attempt any three questions out of the remaining five.	
			All questions carry equal marks.	
			Assume suitable data, if required and state it clearly.	
	Q.1		Attempt any FOUR	[20]
		a	Discuss the basic need and advantages of data compression with examples.	[05]
		b	What is motion compression in comparison to image compression?	[05]
		c	What is the difference between Active attack and Passive attack?	[05]
		d	Find the multiplicative inverse of 8 mod 11.	[05]
		e	State Fermat's theorem with their applications in cryptography.	[05]
	Q. 2	a	Explain AES in detail with a neat block diagram.	[10]
		b	Explain HASH and MAC functions with their role in cryptography.	[10]
	Q. 3	a	Encrypt the plain text 63 using the RSA algorithm which uses prime	[10]
			numbers p=7 and q=11. The public key e=13. Verify that the decrypted text	
			is same as the plain text.	
7		Ь	Define Key management. Explain Diffie Hellman Key exchange algorithm with an example.	[10]
	Q. 4	a	What is firewall and how they can be designed for effective security?	[10]
		b	Write a short note on JPEG-2000.	[10]
	Q. 5	a	Explain Intrusion Detection System in detail.	[10]
		b	Explain caesar cipher and multiplicative cipher with suitable example and diagram.	[10]
	Q. 6	a	Explain μ Law and A Law companding.	[10]
		b	Determine the Lampel Ziv code for the following bit stream	[10]
			11101001100010110100. Recover the original sequence from the encoded	
			stream.	
		VX 🚄		

30348