Paper / Subject Code: 40824 / Signals & Systems

21/05/2025 SE EXTC SEM-IV C-SCHEME SS QP CODE: 10083524

Duration: 3hrs [Max Marks:80] **N.B.**: (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. Attempt any FOUR [20] 1 Find the fundamental period of the signal $x(t)=3\cos 4\pi t + 2\sin 8\pi t$ [05]Compare energy and power signal [05][05]Find the initial value and final value of the Laplace transform X(s) = Find the Z-transform of $x[n] = 0.5^n u[n]$. [05] Using duality property, find out the Fourier transform of $\delta(t)$ [05]Obtain the Fourier transform of a rectangular pulse with duration T and amplitude A in the 2 [10]interval $-\frac{T}{2} < t < \frac{T}{2}$ **b** $x(n) = \{1, 1, 1, 1, 2\}$. Sketch $x[n-2], x[-n], x[-3-n], x[2n], x[\frac{n}{2}]$. [10] Underline in x [n] shows origin. Find the inverse Laplace transform of $X(s) = \frac{2}{s(s+2)(s+4)}$ for all possible ROCs. 3 [10]Test the given systems for Linearity, Causality, Stability, Memory and Time Invariant [10] $\mathbf{y}(t) = \mathbf{x}(t^2)$ Y(n)=x(-n)Find x[n] using partial fraction method from the given function $X(Z) = \frac{z-4}{(z-1)(z-2)^2}$ [10] Find the convolution of given two signals $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = e^{-5t}u(t)$. [10] Find the transfer function H(z) and impulse response h[n] of a discrete time system with I/O [10] relation y(n) - 3y(n-1) - 4y(n-2) = x[n] + 2x[n-1]**b** Realize the given IIR system using Direct form I and Direct Form II. [10] $H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z - \frac{1}{4})(z^2 - z + \frac{1}{2})}$ Explain any two [05] Properties of Laplace Transform [10]

ii. Sampling theorem for lowpass Signals

FIR Filters and Linear phase Filters