Paper / Subject Code: 40823 / Linear Integrated Circuits

May 21, 2024 02:30 pm - 05:30 pm 1T01034 - S.E.(Electronics and Telecommunication)(SEM-IV)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 40823 - Linear Integrated Circuits QP CODE: 10054971

Time: 3 hours Total Marks: 80 N.B: 1) Question No.1 is compulsory 2) Solve any three from the remaining five. 3) Figures to the right indicate full marks. Q. 1 Attempt any four sub-questions. A. Explain the block diagram of general-purpose op-amp [5] B. Draw a neat circuit diagram for voltage to current converter. Derive its output current expression. C. With the help of a neat circuit diagram, input / output waveforms and transfer characteristics, explain the working of zero crossing detector (ZCD). Explain the functional block diagram of Timer IC 555. Design a 50-mA current source using IC 7805. Assume $R_L = 100 \Omega$ With the help of a functional block diagram explain the working of Voltage Controlled Oscillator IC 566 Draw the circuit diagram of a closed loop inverting amplifier using op-amp with [10] a voltage gain of -10. If the supply voltage is \pm 15 V and input signal applied to the circuit is $v = 0.5 \sin (2\pi 1000t)$ sketch its input and output waveforms. Clearly indicate the peak values of the voltages and time period of the waveforms. [10] Design a practical integrator using op-amp to integrate an input signal where lowest desired frequency of Integration is 1 kHz. (Assume C_F = $0.01\mu F$ With the help of a circuit diagram, input and output waveforms and [10] voltage transfer characteristics explain the working of a non-inverting Schmitt trigger. Derive the expressions for the Upper & lower threshold levels. Design an astable multivibrator for an output frequency of 5 kHz and duty [10] cycle 75%. (Assume $C_F = 0.01 \mu F$)

Paper / Subject Code: 40823 / Linear Integrated Circuits

Q. 4 A.	Draw the circuit of an instrumentation amplifier using three op-amps.	S [10]
	Derive its output voltage equation. What are its advantages over a	Y
	difference amplifier using single op-amp?	, 9
B.	What is a precision rectifier? Write the advantages of precision rectifier	[10]
	over normal diode rectifier. Explain half wave precision rectifier with the	
	help of a diagram input-output waveforms and transfer characteristics.	1
	ST ST ST ST	\$\frac{1}{20}
Q. 5 A.	Design an adjustable output voltage regulator using IC 317 to give 10	[10]
	Volts at $I_L = 150$ mA. Given $I_{ADJ} = 100$ μ A. Choose $R_1 = 240$ Ω	3
B.	What is the basic principle of Sine Wave oscillators? With the help of a	[10]
V.	neat diagram explain the working of R C phase shift oscillator using op	
	amp. Write the expression for its frequency of oscillation. Calculate the	2 ¹
570.	values of R & C if its frequency of oscillation is 1 kHz.	Ç
45	762 724 724 724 724 724 724 724 724 724 72	
Q. 6	Write short notes on: (Attempt any four)	165
A.	Closed loop Difference Amplifier using Op-amp	[5]
В.	Practical Differentiator using Op Amp	[5]
C.	Peak detector using Op Amp	[5]
D.	Monostable Multivibrator using IC 555	[5]
E,	High voltage Low Current Voltage regulator using 723	[5]
≫F.	IC 565 Phase Locked Loop (PLL)	[5]
0.1		

·***************