Paper / Subject Code: 51223 / Digital System Design

06/06/2025 SE EXTC SEM-III C-SCHME DSD QP CODE: 10083098

(3 Hours)		Total Marks: 8	
N.B.	1.	Question No. 1 is Compulsory	
	2.	Out of remaining questions, attempt any three	
	3.	Assume suitable data if required	
	4.	Figures to the right indicate full marks	
1.		Attempt any four	
	(a)	Perform subtraction using 2's complement method i) (68-24) ₁₀ ii) (44-60) ₁₀	[5]
	(b)	State and prove De-Morgan's theorem	[5]
	(c)	Convert the given Boolean expression to minterms $F(A,B,C,D) = Y = ABC + AC$	[5]
	(d)	Define and explain the following terms in case of logic families:	[5]
		Figure of merit, Fan-in and Fan-Out, Current and Voltage parameters, Noise Margin	
	(e)	Write short notes on FPGA and CPLD	[5]
2.	(a)	Draw the block diagram of BCD adder using IC 7483 and show with example the addition of two BCD numbers	[10]
	(b)	Develop a mod 6 Synchronous Counter using T F/Fs which counts in the sequence	[10]
	901	0-1-2-3-4-5-0. Take care of lockout condition	
43. ·	(a)_	Minimize the following SOP using K-Map and implement using universal gates. $F = \sum m (0,2, 6,7,8,9, 10, 11, 12, 13) + d (14, 15)$	[10]
	(b)	Obtain the minimal expression using tabular method $F = \sum m (1,2,3,5,6,7,8,9,12,13,15)$	[10]
4 45	(a)	What is shift register? Explain SISO type of shift register with an example	[10]
	(b)	Implement a Full adder using PLA	[10]
5.	(a)	Draw and explain the working of a 4-bit Johnson counter with timing diagram	[10]
	(b)	Sketch and explain the working of a 4-bit Asynchronous down counter using JK flip	[10]
		flop. Sketch each output with reference to clock	[IO]
6.	54	Solve the following	
	(a)	Give classification of semiconductor memories and explain DRAM in brief	[5]
	(b)	Write VHDL code to build a 4:1 Multiplexer	[5]
	(c)	Convert J-K-Flip Flop to T-Flip Flop	[5]
	(d)	Convert J-K Flip-Flop to D-Flip-Flop	[5]

83098