Paper / Subject Code: 51223 / Digital System Design

June 10, 2024 02:30 pm - 05:30 pm 1T01033 - S.E.(Electronics and Telecommunication)(SEM-III)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 51223 - Digital System DesignQP CODE: 10054869

		(3 Hours)	3. 00
N.B.	1.	Question No. 1 is Compulsory	, ,
	2.	Out of remaining questions, attempt any three	
	3.	Assume suitable data if required	AT)
	4.	Figures to the right indicate full marks	
1.	(a)	Compare SRAM and DRAM	[5]
	(b)	Compare Sequential Circuits and Combinational circuits with Suitable Examples	[5]
	(c)	State and Prove De Morgan's theorems	5 [5]
	(d)	Design a one-bit magnitude Comparator	[5]
			á
2.	(a)	Prove that NAND and NOR Gates are universal Gates	[10]
	(b)	Perform following	
		i) $25_{10} - 10_{10}$ using two's complement method	[5]
		ii) Convert the given decimal number into Hexadecimal 675.625 ₁₀	[5]
3.	(a)	Design a 3 bit Binary to Gray code converter and Implement using XOR Gates	[10]
J.		only.	LIUJ
	(b)	Implement the given function using 16:1 Multiplexer	[10]
5	(6)	$F(A,B,C,D) = \sum m(0, 2, 3, 6, 8, 9, 12,14)$	[±v]
	,46		
4	(a)	Minimize the following expression using Quine McClusky Technique	[10]
	V	$F(A, B, C, D) = \sum m(0, 2, 4, 6, 7, 8, 10, 11, 12, 14, 15)$	
	(b)	Derive characteristic equation for JKFF	[5]
	(c)	Convert JK FF to T FF	[5]
5. $^{\prime}$	(a)	Explain a 4-bit asynchronous up counter. Sketch output at each flipflop	[10]
	(b)	Write a VHDL program to design a 2:1 Mux	[5]
# T.D.	(c)	Write a VHDL program to design a half adder	[5]
	45		
6.	(a)	Design synchronous mod 8 up counter using JK FF	[10]
	(b)	Write a note on CPLDs	[10]
767		A A A A A	