(3 Hours) [Total Marks: 80

NB.

- (1) Question No.1 is compulsory.
- (2) Attempt any three questions from remaining.
- (3) All questions carry equal marks.
- (4) Assume suitable data wherever necessary.
- Q.1] Answer any four of the following:-

(20 Marks)

- (a) Define the terms 'path' & 'trajectory'. What is the difference between them?
- (b) Explain what is direct kinematics & inverse kinematics?
- (c) Describe Generalized Voronoi Diagrams (GVD) with a neat sketch.
- (d) Explain edge detection in robotic vision.
- (e) Write a short note on fine motion planning with a neat sketch.
- Q.2] (a) Explain significance & use of the Denavit-Hartenberg (D-H) algorithm.

(05 Marks)

(b) Develop DH representation of a four axis SCARA robot and obtain its arm matrix.

(10 Marks)

(c) Define & explain kinematic joint and link parameters with a neat sketch.

(05 Marks)

- Q.3] (a) With a neat sketch, explain the typical four point, pick & place trajectory for carrying out pick & place operation. Define pick-up point, lift-off point, set-down point & place point. (10 Marks)
 - (b) In detail, explain continuous path motion & interpolated motion with appropriate sketches wherever necessary.

 (10 Marks)
- Q.4] (a) Obtain inverse kinematic analysis of a 2 axis planar robot as shown in Fig. 4.1 as below:-

(10 Marks)

Fig. 4.1 – Planar two link manipulator robotic arm for Q.4 (a)

5107 Page 1 of 2

Paper / Subject Code: 89371 / Robotics

- (b) Classify robots based on the drive technology used, the work envelope geometry & motion control methods with neat sketches wherever necessary. (10 Marks)
- Q.5] (a) Evaluate the trajectory profile of position, velocity & acceleration for a 1 DOF planar robotic manipulator such that initial angular position $\theta_0 = 0^\circ$ & final angular position $\theta_f = 120^\circ$ with a 15 second movement from point A to point B ($t_0 = 10$ sec. & $t_f = 25$ sec.). Assume velocities at each points are zero ($v_0 = v_f = 0$ °/sec.) (10 Marks)
- (b) What is a robot programming language? Describe the different types of robotic programming languages in detail. (10 Marks)
- Q.6] Attempt any four of the following

(20 Marks)

- (a) Write a short note on image segmentation in robot vision.
- (b) What is workspace analysis? Define joint space work envelope, total work envelope & dexterous work envelope.
- (c) Describe linear interpolated motion with parabolic blends, giving neat sketches as appropriate.
- (d) Explain grasp planning with a neat sketch.
- (e) Describe the following robot specifications / characteristics (any five) with appropriate units & draw a neat sketch as required:-
 - (i) No. of axes & degrees of freedom (DOF)
 - (ii) Maximum speed & load carrying capacity
 - (iii) Reach & stroke
 - (iv) Tool orientation
 - (v) Repeatibility, accuracy & precision
 - (vi) Operating environment

55107