Time: 3 Hrs

Marks: 80

10M

10M

10M

10M

NB:	(1) Question No. 1	is Compulsory .
-----	--------------------	------------------------

- (2) Attempt any three questions out of remaining five.
- (3) Each question carries 20 marks and sub-question carry equal marks.

(4) Assume suitable data if required.

Q.1 Answer **any four**

a) Convert the decimal number (175.23)10 to their octal, hexadecimal, BCD and gray code			
equivalent.	5M		
b) Define Propagation delay, noise margin, power dissipation, fan in & fan out,5M	<u>v</u>		
c) Design and implement half adder circuit.	5M		
d) A 7-bit hamming code is received as 1011011. Assume even parity and state weather received	code		
is correct or wrong, if wrong then locate the bit error.	5M		
e) Differentiate between mealy and Moore machine			
f) Explain the structural VHDL description of 2 to 4 decoder in detail.	5M		
Q.2 a) Draw the circuit diagram of TTL NAND gate with totem pole output and explain its work	ing		
with the help of a truth table.	10M		
Q.2 b)Design and implement the following expression using a single 8:1multiplexer			
$F(A,B,C,D) = \sum m(0,1,3,5,7,10,11,13,14,15)$	10M		

 $F(A,B,C,D) = \sum m(0,1,3,5,7,10,11,13,14,15)$

Q.3 a) Design and implement D FF using T FF and JK FF using D FF Q.3 b) Design MOD 6 counter by using MOD 8 counter.10M

Q.4 a) Reduce the following state table using partitioning method of state reduction.

PS N	Ne	ext State	Output
Ś		X=0	
	5	X=1	Ő
A	В	C	10
В	D	F	
C	F	S E	0
D	B	G	<u>}</u> 1
E	F	CO	0
F	E	D	00
Go	F	G	0
5	1		

Q.4 b) Implement CMOS as a NAND & NOR gate.10M

- Q.5 a) Implement following function using PLA. **10M** $F1=\sum m = (0,3,4,7)$ and $F2=\sum m = (1,2,5,7)$
- Q.5 b)Implement and explain synchronous MSI counter using IC 74163. 10M
- Q.6 a) Implement and explain 4 bit BCD adder using IC 7483
 - Q.6 b) Write a VHDL program and explain the design procedure 8 bit comparator.
