N.B.

1. Question No. $\mathbf{1}$ is Compulsory.
2. Answer any three out of remaining five questions
3. Assume any suitable data wherever required but justify the same
4. Illustrate answer with sketches wherever required

Q 1 Answer the following (Any four)
a) Explain Elementary and interconnection diagram and their uses.
b) Explain benefits of power factor improvement
c) What is monitoring and targeting. State and explain in brief elements of M and T system.
d) What is soft starter and what are its advantages.
e) Discuss bench marking and its type. State two benchmarking parameters.

Q 2 a) The details of the load in a plant are as follows

Sr. No.	Feeder	KW	Efficiency	Pf	Df	Lf
1.	Electrical dept	200	0.87	0.84	0.6	0.8
2.	Mechanical dept	400	0.85	0.83	0.6	0.9
3.	Chemical dept	600	0.8	0.8	0.8	0.8
4.	IT dept	200	0.9	0.85	0.6	0.7

Calculate KVA rating of transformer which feeds the plant. Draw SLD showing relevant protective and metering devices. Find compensation required for each feeder.
b) Explain Energy performance assessment of illumination by ILER method.

Q 3 a) A 100 Kw heater, $415 \mathrm{~V}, 3$ phase 50 Hz , is to be connected to PCC. Cable length is 100 m . The cable will run with two similar circuits in an unenclosed cable tray. Ambient temp is 40 deg Celsius. Fault level is 40KA. Calculate the size of conductor and specify various assumptions.

Type of Cable	Value of $\mathrm{K}(\mathrm{Cu})$	Value of $\mathrm{K}(\mathrm{Al})$
PVC cable $\leq 300 \mathrm{~mm}^{2}$	115	76
PVC cable $\geq 300 \mathrm{~mm}^{2}$	103	68
XLPE	114	92

b) Explain cable management system.

Q 4 a) A classroom accomodates 10 standard ceiling fans with 75 W consumption.
Energy auditor has suggested to replace them each by a BLDC fans of 28W. The cost of one unit is Rs 10 and cost of one BLDC fan is Rs. 3000. Find annual energy saving and simple payback. Assume number of working hours 08/day and 200 days in a year.
b) What is Energy Efficient Motor. What are the advantages of EEM over standard motor. How it is beneficial from energy saving point of view.

Q 5 a) Explain step by step approach towards load management.
b) Explain Tendering process for the purchase of costliest equipments (open tender).

Q6 a) Design a lighting system for a drawing Hall which measures $25 \mathrm{~m} * 10 \mathrm{~m} * 5 \mathrm{~m}$ in dimensions. Assume and justify suitable assumptions. Find number of fixtures required to maintain average lux level of 300lux in the room. Draw lighting layout.
b) Explain 10 Step methodology for energy auditing.

Data for Illumination Design problems

K	$\mathrm{R}_{\mathrm{C}}=0.7$				$\mathrm{R}_{\mathrm{C}}=0.5$			$\mathrm{R}_{\mathrm{C}}=0.3$		
	$\mathrm{R}_{\mathrm{w}}=0.5$	$\mathrm{R}_{\mathrm{w}}=0.3$	$\mathrm{R}_{\mathrm{w}}=0.1$	$\mathrm{R}_{\mathrm{w}}=0.5$	$\mathrm{R}_{\mathrm{w}}=0.3$	$\mathrm{R}_{\mathrm{w}}=0.1$	$\mathrm{R}_{\mathrm{w}}=0.5$	$\mathrm{R}_{\mathrm{w}}=0.3$	$\mathrm{R}_{\mathrm{w}}=0.1$	
	0	0	0	0	0	0	0	0	0	
0.6	0.43	0.39	0.36	0.42	0.38	0.36	0.41	0.38	0.36	
0.8	0.45	0.41	0.38	0.44	0.40	0.38	0.43	0.40	0.38	
1.00	0.51	0.47	0.44	0.55	0.47	0.44	0.49	0.46	0.40	
1.25	0.55	0.51	0.49	0.53	0.50	0.48	0.52	0.50	0.48	
1.50	0.57	0.54	0.52	0.56	0.53	0.51	0.54	0.52	0.50	
2.00	0.61	0.58	0.56	0.59	0.57	0.55	0.57	0.56	0.54	
2.50	0.63	0.61	0.59	0.61	0.59	0.57	0.59	0.58	0.56	
3.00	0.65	0.63	0.61	0.63	0.61	0.59	0.61	0.59	0.58	
4.00	0.67	0.65	0.63	0.64	0.63	0.62	0.62	0.61	0.59	
5.00	0.68	0.67	0.65	0.65	0.64	0.63	0.63	0.62	0.61	

Lamp Data

Lamp Data			
Sr. No.	Type of Lamp	Wattage	Lumen output
1.	Fluorescent (T8/T5)	18 (Halo phosphate)	1015
		36 (Halo phosphate)	2450
		18 (82/84/86)	1300
		36 (82/84/86)	3250
		28 (T5)	2800
	CFL	9	600
		11	760
		13	920
		18	1200

Data for Cable Design problem TABLE 14.
IEE-Table 9 DV $_{2}$
Current-carrying capacities and associated voltage drops for twin and multicore p.v.c. Insulated eables, non-armoured (copper conductors)

FOR AMBIENT TEMPERATURE Ambient temperatu
Correction factor
TABLE 15
Current-carrying capacitles and assoclated voltage drops for twin and
multicore armoured p.v.c. insulated cables (copper conductors).
Conductor operailing temperature : 70C

FOR AMBIENT TEMPERATURE Ambiont tomparatur
Corraction tactor

TABLE-36
Correction factors for groups of more than one multicore cables

Multicore cables: (Factors to be applied to the values for one cable)	Number of cables								
	2	3	4	5	6	7	8	9	10
	0.80	0.70	0.65	0.60	0.57	0.52	0.48	0.45	0.43

NOTES: 1. These factors are applicable to groups of cables all of one size equally loaded, including groups bunched in more than one plane
2. Where, spacing between adjacent cables exceeds twice their overall diameter, no reduction factor need be applied

