14/12/2024 ELECTRICAL SEM-VII C SCHEME EMD (DLOC-V) QP CODE: 10065394

Dur	ration – 3 Hours Total – 8	80	
N.B	3.:- (1) Question No.1 is compulsory.		
11.Д	(2) Attempt any three questions out of remaining five questions.		
	(3) Assume suitable data if necessary and justify the same.		
	(5) Assume suitable data if necessary and justify the same.	2	
0.1	Amouse the following questions of	20	
Q 1.	Answer the following questions. a) Explain analysis method in CAD.	20	
	b) Explain the working of Permanent Magnet Synchronous Machinesc) Write short note on Window Space Factor.		
	d) Explain types of insulating materials in detail.		
	d) Explain types of insulating natorials in detail.		
Q 2 a)	Explain the effect of choice of electrical loading and magnetic loading on the design of	10	
,	electrical machine?		
Q 2 b)	Derive the output equation of 3 phase induction motor.	10	
Q 3 a)	Find the main dimensions of a 15 kW, 3 phase, 400 V, 50 Hz, 2810 r.p.m. squirrel cage	10	
	induction motor having an efficiency of 0.88 and a full load power factor of 0.9. Assume		
	specific magnetic loading = 0.5 Wb/m ² ; specific electric loading 25000 A/m. Take the		
	rotor peripheral speed as approximately 20 m/s at synchronous speed.		
Q 3 b)	Explain the estimation of full load MMF in synchronous machines.	10	
0.4 a) =	Find the main dimensions of 100 MVA, 11 KV, 50 Hz, 40 pole salient pole generator	10	
Q 4 a)	assuming air gap flux density as 0.65 Wb/m ² and ampere conductors as 40000 per meter.	10	
	The peripheral speed should not exceed 60 m per second.		
Q 4 b)	Explain the design of damper winding in synchronous machines	10	
V 10)	2. Aprilia de design of damper winding in dynamicology indemness.	10	
Q 5 a)	A 250 kVA, 6600/400 V, 3 phase core type transformer has a total loss of 4800 W at full	10	
T.S.	load. The transformer tank is 1.25 m in height and 1 m x 0.5 m in plan. Design a suitable		
	scheme for tubes if the average temperature rise is to be limited to 35° C. The diameter of		
	tubes is 50 mm and are spaced 75 mm from each other. The average height of tubes is 1.05		
	m. Specific heat dissipation due to radiation and convection is respectively 6 and 6.5 W/m ²		
	-°C. Assume that convection is improved by 35 per cent due to provision of tubes.		
Q 5 b)	Explain sizing of electric motors for electric vehicle?	10	
Q 6 a)	Differentiate between conducting properties of Cu and Al.	10	
Q 6 b)	i) Draw and explain flowchart of Hybrid method in Computer aided designs.	05	
	ii) Mention the types of cooling methods used in transformer and explain anyone.	0.5	
		05	

65394