Paper / Subject Code: 32023 / Control System

1T00835 - T.E.(Electrical Engineering)(SEM-V)(Choice Base June 7, 2024 02:30 pm - 05:30 pm Credit Grading System) (R- 19) (C Scheme) / 32023 - Control System QP CODE: 10057055

Time: 3 Hours Total Marks: 80

- N.B: (1) Question No. 1 is compulsory.
 - (2) Attempt any three from the remaining questions.
 - (3) Figures to the right indicate full marks.
 - (4) Use Graph paper and semi log paper wherever necessary.
 - 1. Attempt any four.

- (A) Explain the effects of addition of open loop poles and zeros on root locus and transient response.
- (B)Derive force to current analogy between mechanical and electrical system.
- (C) Define the term damping ratio and explain its condition for stability.
- (D Explain advantages of state space approach over conventional approach.
- (E) Explain stability condition of Bode plot by using suitable diagram.
- 2. (A) Consider a unity feedback system with closed loop transfer function

- $C(s)/R(s)=2/(s^2+3s+7)$. Find open loop transfer function. Show that the steady state error in the unit step response is 0.714.
- (B) Determine the range of operating values of K so that system will be stable for the unity feedback system having characteristic equation as $S^4+5S^3+5S^2+4s+k=0$ by Routh Hurwitz Method.
- 3. (A) For the unity feedback system find the steady state error for the following test input of 2+6t for G(s)=1000(S+6)/(S+7)(S+10). 10
 - (B) The unity feedback system is characterized by an open loop transfer system G(s)=10/(S+2)(s+5). Determine damping ratio, undamped natural frequency of oscillation. What is the percentage overshoot of the response to a unit step input.
 - 10
- 4. (A)Determine gain margin, phase margin, gain crossover frequency and phase cross over frequency for following transfer function: 10 100(s+4)s(s+0.5)(s+10)
 - (B) Sketch the root locus for unity feedback system for the transfer function given below: 10

$$G(s) = \frac{20}{S(S+2)(S+4)}$$

5. (A) Use Mason gain formula to find C(s)/R(s) of following signal flow graph:

(B) Represent the following system in state space in phase variable form and draw its state model.

$$G(s) = \frac{100(s+5)}{s(s+1)(s+4)}$$

10

20

- 6. Write notes on any two:
- (A) Define Gain Margin, Phase Margin, Phase cross over frequency and gain Cross over Frequency in frequency domain
- (B) Draw the block diagram of closed loop linear time invariant system and define its components.
- (C) Write a short note on State Transition Matrix.