Paper / Subject Code: 32021 / Electrical AC Machines II

[Total Marks: 80]

11/11/2024 ELECTRICAL / SEM-V / EAM-II QP CODE: 10067017

	2) At 3) III	uestion No. 1 is compulsory ttempt any three of the remaining Questions No. 2 to No. 6. lustrate answers with diagrams wherever necessary. ssumptions made should be clearly stated.	
Q 1.		Solve any four	
	a)	Explain the term coil span factor(Kc) and pitch factor (Kd).	05
	b)	Define the term Synchronous impedance and voltage regulation of an alternator.	05
	c)	What do you mean by synchronization of alternators? Describe any one method of synchronizing.	05
	d)	Explain why the synchronous motor is not self-starting.	05
	e)	Write a note on Steady-state analysis of synchronous machines.	05
Q 2.	a) b)	Derive the E.M.F equation for an alternator. Also, draw the equivalent circuit of the alternator. A 550 V, 55 KVA, three-phase, star-connected alternator has an effective resistance of 0.2	10
	U)	ohms per phase. A field current of 10 A produces an armature current of 200 A on a short circuit and an emf of 450 V on an open circuit. Calculate the synchronous reactance and voltage regulation at full load power factor 0.8 lagging.	10
Q 3.	a)	Explain the hunting of synchronous machines. What is the purpose of damper winding in the synchronous machine?	10
	b)	Two station generators A and B operate in parallel. Station capacity of A is 50 MW and that of B is 25 MW. The full-load speed regulation of station A is 3% and station B is 3.5%. Calculate the load sharing if the connected load is 50 MW. The no-load frequency is 50 Hz.	10
Q 4.	a)	Explain V-curves and inverted V-curves of synchronous motors.	10
	b)	Describe the slip test method for the measurement of Xd and Xq of synchronous machine.	10
Q 5.	a)	Explain Blondel's two-reaction theory of salient-pole synchronous machines.	10
	b)	A 1500 KVA, Star connected, 2300 V, 3 phase, Salient pole synchronous generator has reactances Xd= 1.95 Ohms and Xq=1.40 ohms per phase. All losses may neglected. Find the excitation voltage for operation at rated KVA and power factor of 0.85 lagging.	10
Q 6.		Solve any two.	20
	a)	Explain different starting methods used for synchronous motors.	
	b)	What is an infinite bus? state the characteristics of an infinite bus.	
	c)	Derive the basic machine relation in dq0 Variables.	

(3 Hours)