Duration - 3 Hours

Total Marks assigned to the paper- 80

N.B.: - (1) Question No. 1 is compulsory.
 (2) Attempt any Three questions out of the remaining five questions.
 (3) Assume suitable data if necessary and justify the same.

Q 1. Answer all questions.

A) Explain the terms short circuit MVA and symmetrical fault. 05
B) Discuss the role of bundled conductors in corona. 05
C) Differentiate between symmetrical and unsymmetrical faults. 05
D) Explain various rules used in the formation of sequence networks of power systems.
Q 2 a) Illustrate the short circuit of synchronous machine at no load condition.
Q2 b) A synchronous generator and synchronous motor each rated at 25 MVA and 11 kV having 15% subtransient reactance are connected through transformer and line as shown. The transformer is rated for $25 \mathrm{MVA}, 11 / 66 \mathrm{kV}$ and $66 / 11 \mathrm{kV}$ with leakage reactance of 10%.The line has reactance of 10% on the base of 25 MVA and 66 KV . The motor is drawing 15 MW at 0.8 pf leading and terminal voltage is 10.6 kV . When a symmetrical three phase fault occurs at the terminal of motor. Determine the subtransient current in generator, motor and fault.

Q 3 a) Discuss the phase shift of symmetrical components in star delta transformer.
Q 3 b) Derive the equation for fault current and sequence network for double line to ground $\mathbf{1 0}$
Q 4 a) A $25 \mathrm{MVA}, 13.2 \mathrm{kV}$ alternator with solidly grounded neutral has subtransient reactance of 0.25 pu . The negative and zero sequence reactances are 0.35 and 0.1 pu respectively. A single line to ground fault occurs at the terminals of an unloaded alternator. Determine the fault current and line to line voltages.(Neglect resistance)
Q 4 b) Describe the generation of voltage and current travelling waves on a open circuited line with figure and equations.

Q 5 a) Calculate an arrestor's voltage and current rating if it is placed at the end of a line and at the junction of two lines. Draw the equivalent circuit for the same.

Q 5 b) Discuss the generation and formation of corona rings and corona pulses in EHV lines.
Q6 a) Describe the algorithm for short circuit studies. $\mathbf{1 0}$
Q 6 b) Explain the following (i) Fortescue theorem (ii) volt time curves

