Paper / Subject Code: 40621 / Engineering Mathematics - IV

1T00834_1 - S.E.(Electrical)(Choice Based)(R-2020-21)('C' Scheme) Semester - IV / 40621 - Engineering Mathematics - IV

QP CODE: 10015737 DATE: 08/12/2022

Duration: 3 hours

Marks: 80

- N.B. (1) Question No. 1 is **COMPULSORY**.
 - (2) Answer ANY THREE questions from Q.2 to Q.6
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to right indicate full marks.
- Que. 1 a. Show that the following quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4zx$ is positive definite
 - b. Find the extremal of $\int_{x_1}^{x_2} \sqrt{1 + (\frac{dy}{dx})^2} dx$
 - c. Find a unit vector orthogonal to the vectors (1,1,1) and (0,1,1,).
 - d. Evaluate $\int_0^{1+i} \overline{Z} \, dz$ along the real axis from z=0 to z=1 then vertically to 1+i.
- Que. 2 a. Find the extremal of $\int_0^{\frac{\pi}{2}} (y'^2 y^2 + 2xy) dy$ with y(0) = 0 6 $y(\frac{\pi}{2}) = 0.$
 - b. In a normal distribution 30% of the items are below 35 and 10% of the items are 6 above 60. Find the mean and standard deviation.
 - c. The lines of regression are 20x-9y-107=0 and 15x=8y+130, V(x)=16 Find the means, r, and V(y).
- Que. 3 a. In sampling a large number of parts manufactured by a machine the mean number of defectives in a sample of 20 is 2. Out of 1000 such a sample how many would you except to contain i) 3 defectives ii)less than 3 defectives.
 - b. Find the line of regression of Y on X for the following data

X	5	6	7	8	9	10	11
Y	11,0	14	14	15	12	17	16

c. Show that $V=\{(x,0)/x \text{ is real}\}$ with the operations of addition and scalar multiplication defined as $(x_1,0)+(x_2,0)=(x_1+x_2,0)$ and k(x,0)=(kx,0) is a vector space.

Paper / Subject Code: 40621 / Engineering Mathematics - IV

QP CODE: 10015737

8

- Que. 4 a. Reduce the following quadratic form $3x^2 + 5y^2 + 3z^2 2xy 2yz + 2zx$ to canonical form also find rank signature and index.
 - b. Verify Cauchy-Schwartz inequality for U=(2,4,-3,5) and V=(3,2,3,-1)
 - c. Find all possible expansions of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ about z = -1
- Que. 5 a. If the probability mass function of a random variable is $f(x)=kx(1-x),\ 0\leq x\leq 1. \text{find its mean and variance}.$
 - b. Find the orthonormal basis by Gram-Schmidt process to (-1,10), (0,1,1), (101). 6
 - c. Fit a second-degree parabolic curve to the following data

X	1	2	3	4	5	6	750	8	9
Y	2	6	7	8	10	11	11	10	9

- Que. 6 a. Show that $\{(a\ 0\ 0) \text{ such that a is real}\}\$ is subspace of \mathbb{R}^3
 - b. Evaluate $\oint_C \frac{(z-3)}{z^2+2z+5} dz$ where C is the circle (a) |z|=1 (b) |z+1-i|=2 (c) |z+1+i|=2
 - c. Use Rayleigh-Ritz Method to find the extremal of $\int_0^1 (xy + \frac{1}{2}y'^2) dx \text{ given } y(0) = 1 \& y(1) = 0$
