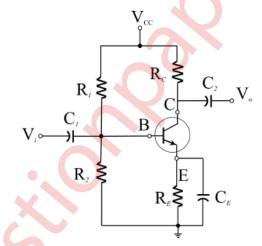
25/11/2024 ELECTRICAL SEM-III C SCHEME AE QP CODE: 10064760

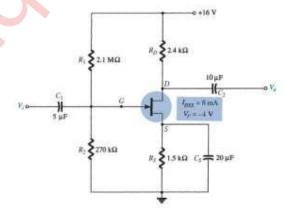
Time: 3 Hours Total Marks: 80

N.B.: All questions are compulsory.


Q1) Answer any FOUR of the following (entire syllabus)

a.	Explain Diode as a c	lipper.		(05	5

- b. Explain BJT as a switch.
- (05)c. Explain the operation of D-MOSFET. (05)
- d. Explain the Block diagram of an operational amplifier.
- (05)(05)
- e. Draw a functional block diagram of IC 555 (05)
- f. Explain the operation of a Zener diode.


Q2)

- a. Analyse full wave bridge wave rectifier along with 'C' filter. Analyse the impact impact of 'C'filer over ripple factor. (10)
- b. In the following circuit of BJT CE voltage divider bias calculate the Q point. Given Data: $V_{CC}=18 \text{ V}$, $R_1=82K\Omega$, $R_2=22K\Omega$, $R_C=5.6K\Omega$, $R_E=1.2K\Omega$, $\beta=50$ (10)

Q3)

- Perform small signal analysis over a BJT CE amplifier with voltage divider bias using the h-model. Derive an expression for current gain, input impedance, voltage gain and output impedance. (10)
- b. Find I_{DQ} , V_{GSQ} , V_D , and V_{DS} In the given circuit. (10)

Q4) a. b.	Derive expressions for voltage gain and output impedance of MOSFET CS (Self bias) amplifier circuit. Explain Op-Amp as an inverting summing amplifier.	(10) (10)
Q5) a. b.	Explain Op-Amp as an instrumentation amplifier. Design a voltage regulator using IC LM 317 to produce an output voltage of 12.5 volts.	(10) (10)
Q6) a. b.	Write a short note on a Schottky diode and an opto-isolator. Explain Op-Amp as a Square wave generator.	(10) (10)