Paper/Subject Code: 31924/Data Warehousing & Mining 07/12/2024 TE | Comp | Sem-I | CBCGS | RH9 | C-Scheme | Dwm | SH-24

Time: 3 hours Total Marks: 80

Note: 1. Question no.1 is compulsory.

- 2. Attempt any three out of remaining five.
- 3. Assumptions made should be clearly indicated.
- 4, Figures to the right indicates full marks.
- 5. Assume suitable data whenever necessary.

Q. 1 Solve any four.

(05 marks each)

QP-10065528

- A Every data structure in the data warehouse contains the time element. Why?
- B Explain FP Growth Algorithm.
- C Explain different types of attributes.
- D Discuss different applications of Web Mining.
- E Explain Holdout and Random subsampling method to evaluate the accuracy of classifier.
- F Differentiate between Classification and Clustering.

Q.2

(10 marks each)

- For a supermarket chain, consider the following dimensions namely product, store, time and promotion. The schema contains a central fact table for sales with three measures unit_sales, dollars_sales and dollar_cost.
 - 1. Draw a star schema.
 - 2. Calculate the maximum number of base fact table records for warehouse with the following values given below:
 - Time period 5 years
 - Store-300 stores reporting daily sales
 - Product-40,000 products in each store (about 4000 sell in each store daily)
 - Promotion- a sold item may be in only one promotion in a store on a given day.

B

Explain the different techniques to handle noisy data.

Suppose a group of sales price records has been sorted as follows:

3, 7, 8, 13, 22, 22, 22, 26, 26, 28, 30, 37.

Partition them into three bins by equal-frequency (Equi-depth) partitioning method. Perform data smoothing by bin mean and bin boundary.

65528

Q.3

(10 marks each)

- A Explain Updates to dimensional table in detail.
- B Explain the following data pre-processing methods.
 - I) Dimensionality reduction II) Data transformation and Discretization

Q.4

(10 marks each)

A Given the training data for height classification, classify the tuple, t=<Rohit, M, 1.95> using Naïve Bayes Classification.

Name	Gender	Height	Output
Kiran	F	1.6m	Short
Jatin	M	2m	Tall
Madhuri	F	1.09m	Medium
Manisha	F	1.88m	Medium
Shilpa	F	1.7m	Short
Bobby	M	1.85m	Medium
Kavita	F	1.6m	Short
Dinesh	M	1.7m	Short
Rahul	M	2.2m	Tall
Shree	M	2.1m	Tall
divya	F	1.8m	Medium
Tushar	M	1.95m	Medium
Kim	F	1.9m	Medium
Aarti	F	1.8m	Medium
Rajashree	F	1.75m	Medium

B Consider four objects with two attribute (X and Y). These four objects are to be grouped together into two clusters using k-means clustering algorithm. Following are the objects with their attribute values.

Object	X	Y
A	1.5	1
В	2	1
C	\$4	3
D	5	4

Q. 5 (10 marks each)

A Given the following data, apply the Apriori algorithm. Find frequent item set and strong association rules. Given Support threshold=50%, Confidence=60%

Transaction	Items
T1	I1, I2, I3
T2	I2, I3, I4
T3	I4, I5
T4	I1, I2, I4
T5	I1, I2, I3, I5
T6	I1, I2, I3, I4

B What is Web Mining? Differentiate between Web Mining and Data Mining. Explain types of Web Mining.

Q. 6 Write short note on.

(5 marks each)

- A Decision Tree Induction Algorithm
- B K-medoids clustering Algorithm
- C Multilevel and multidimensional association rule mining
- D Page Rank Algorithm
