SE- comp - sem IV - R-19 - C. scheme

Time: 3 hours

N.B. (1) Question one is Compulsory.

- (2) Attempt any 3 questions out of the remaining.
- (3) Assume suitable data if required.

Max. Marks: 80

Q. 1

- a) Consider a knapsack with a capacity of W = 50. There are 4 items with the following weights and profits: (P1, P2, P3, P4) = (60, 100, 120, 80) and weights (w1, w2, w3, (05) w4) = (10, 20, 30, 40). Find the maximum profit and optimal using greedy method.
- b) Write algorithm for binary search and explain its working with an example. (05)
- c) Explain how Graph coloring problem can be solved with backtracking using (05) suitable example.
- d) Solve the following recurrence relations using Master's method. (05)
 - i. $T(n) = 4T(n/2) + n^2$
 - ii. T(n) = 16T(n/4) + n

Q. 2

- a) What is an N-Queen problem? Give an algorithm to solve this problem using backtracking method. Explain its working with an example.
- b) Give step by step method to find the Minimum Spanning Tree of the given graph using Prim's Algorithm. Take vertex 1 as the root.

Q. 3

- a) Write an algorithm for Quicksort. Derive and discuss its time complexity for all (10) cases. Explain with an example
- b) What is the 15-puzzle problem? Explain with an example how this can be solved using Branch and Bound. (10)

87 code

Page 1 of 2

Prog code

Q. 4

a) Give an algorithm to solve the All-pairs shortest path problem using dynamic (10) programming. What is its time complexity? Find the All-pairs shortest path for all the vertices for the following graph.

b) Explain the KMP algorithm for string matching with a suitable example. What is the (10) advantage of the KMP algorithm over other string-matching algorithms?

Q.5

- a) Explain asymptotic notations in detail. (10)
- b) Give an algorithm to find Longest Common Subsequence between two sequences (10) using Dynamic Programming. Also, find the LCS for the following strings: X = "AMERICA"

Y = "ARMENIA"

0.6

- a) What is assembly line scheduling? Explain its solution using dynamic programming (10)
- b) Write detailed notes on P, NP, NP-Hard and NP-Complete class of problems. (10)
