University of Mumbai Examination Summer 2022

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures & Graph Theory

Time: 2 hours 30 minutes

Max. Marks: 80

	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	Let the set A is {1, 2, 3} and B is {2, 3, 4}. Then the set A – B is
Option A:	{1, -4}
Option B:	{1, 2, 3}
Option C:	{1}
Option D:	{2, 3}
2.	Let R be a relation on the set A of positive integers. Determine the property of
	relation R , if (x, y) \in R where R={(x,y) xy \ge 1}
Option A:	Anti symmetric
Option B:	Transitive
Option C:	Symmetric
Option D:	Equivalence relation
3.	The statement ($\sim Q \leftrightarrow R$) $\wedge \sim R$ is true when?
Option A:	Q: True R: False
Option B:	Q:True R:True
Option C:	Q: False R:True
Option D:	Q: False R: False
4.	How many two-digit numbers can be made from the digits 1 to 9 if repetition is
4.	allowed?
Option A:	9
Option B:	18
Option C:	81
Option D:	99
5.	Let P (x) denote the statement " $x > 5$." Which of these have truth value true?
Option A:	$\mathbf{P}\left(0\right)$
Option B:	P(1)
Option C:	P(2)
Option D:	P (9)
6.	How many binary relations are there on a set S with 5 distinct elements?
Option A:	2^5
Option B:	$\frac{1}{2^{25}}$

Option C:	2^{10}
Option D:	2^{15}
7.	The inverse of function $f(x) = x^3 + 2$ is
Option A:	$f^{-1}(y) = (y-2)^{1/2}$ $f^{-1}(y) = (y)^{1/3}$
Option B:	$f^{-1}(y) = (y)^{1/3}$
Option C:	$f^{-1}(y) = (y-2)^{-1/3}$
Option D:	$f^{-1}(y) = (y-2)$
8.	When is a graph said to be bipartite?
Option A:	If it can be divided into two independent sets A and B such that each edge connects a
	vertex from to A to B
Option B:	If the graph is disconnected
Option C:	If the graph has at least n/2 vertices whose degree is greater than n/2
Option D:	If the graph is connected and it has odd number of vertices
9.	An algebraic structure is called a semigroup.
Option A:	(Q, +, *)
Option B:	(P, *)
Option C:	(P, *, +)
Option D:	(+, *)
10.	Condition for monoid is
Option A:	(a+e)=a
Option B:	(a*e)=(a+e)
Option C:	a=(a*(a+e)
Option D:	$(a^*e)=(e^*a)=a$
- 49.45	

Q2 (20 Marks Each)		
A	Solve any Two	5 marks each
i.	Prove that 8 ⁿ - 3 ⁿ is a multiple of 5 by mathematical induction	on, n≥ 1
ii.	What is a distributed lattice? Draw the hasse diagram of D_{1001} . distributive lattice? Find the inverses of all elements of D_{1001} .	Whether it is a
iii.	Determine the Eulerian and Hamiltonian path, if exists, in the following d	graphs: e b.
В	Solve any One	10 marks each

		<u>- (</u>
i.	What is a transitive closure? Find the transitive closure of R using Warshall's	00
	algorithm where $A = \{a, b, c, d, e, f\} \& R = \{(a, b), (b, c), (c, e), (e, f), (e, b)\}$	
ii.	Let $f(x) = x + 2$, $g(x) = x - 2$ and $h(x) = 3x$ for all $x \in R$. (R is the set of real number).	
	Find i) $f \circ g \circ h$ ii) $h \circ g \circ f$ iii) $f \circ f \circ f$	1
		7

Q3 (20 Marks	
Each)	
A	Solve any Two 5 marks each
i.	Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:
	R = {(1, 1), (1,5), (2, 2), (2,3), (2, 6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)} Find the partitions of A induced by R, i.e., find the equivalence classes of R.
ii.	Find truth table for the following expression & determine whether it is a tautology: $(^{\circ}P \land (Q \land R))v (Q \land R)v (P \land R) \leftrightarrow R$
iii.	In an auditorium, the chairs are to be numbered with an alphabet followed by a positive integer not exceeding 60. Find the maximum no. of chairs that can be placed in the auditorium.
В	Solve any One 10 marks each
i.	Let $(x1 \ \Lambda \ x2) \ V \ (x1 \ \Lambda \ x3) \ V \ (x2 \ \Lambda \ x3)$ be the Boolean expression. Write E $(x1, x2, x3)$ in a Disjunctive & Conjunctive Normal Form.
ii.	Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. H=

Q4 (20 Marks Each)	
A	Solve any Two 5 marks each
i.	If 5 points are taken in a square of side 2 units, show that at least 2 of them
	are no more than √2 units apart.
ii.	Consider (3,8) encoding function $e: B^3 \rightarrow B^8$ defined by $e(000)=00000000$ $e(100)=10I00100$
	e(001)=10111000 $e(101)=10001001$
	e(010) = 00101101 $e(110) = 00011100$

	VO 20, 75, VI. A. VI. A. VI. W. VI.
	e(011) = 10010101 $e(111) = 00110001$
	and let d be the (8,3) maximum likelihood decoding function associated with e. How
	many errors can (e, d) correct?
iii.	Find the consecting functions for the following acquences:
111.	Find the generating functions for the following sequences:
	a. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7,
	b. 6, -6, 6, -6, -6,
В	Solve any One 10 marks each
i.	Define the term bijective function.
	Show that the mapping f: $R \rightarrow R$ given by i) $f(x) = 4x-3 \& ii$ if $f(x) = 4x+7$ is bijective.
ii.	Explain the following terms with suitable example:
	a) Incidence matrix
	b) Hamiltonian path
	c) Partition set
	d) Principle of inclusion & exclusion
	e) Commutative ring