Paper / Subject Code: 42371 / Deep Learning

02/06/2025 BE CSE-AIML SEM-VII C-SCHEME DEEP LEARNING QP CODE: 10082863

Duration: 3hrs			Marks:80	
	C	1) Question No 1 is Compulsory.		
		2) Attempt any three questions out of the remaining five.		
		3) All questions carry equal marks.	70	
	,	4) Assume suitable data, if required and state it clearly.		
	(-	7) Assume suitable data, if required and state it clearly.		
1		Attempt any four	[20]	
1	a)	Explain basic architecture of feedforward neural network.	[20]	
	b)	Explain regularization in neural network.		
	c)	Explain types of neural network.		
	d)	Explain the concept of overfitting and under fitting in neural network.		
	e)	Explain basic working of CNN.		
	-,			
2	a)	Explain the gradient descent algorithm used in neural network. Also discuss types of gradient descent in detail.	[10]	
	b)	Explain the working of auto encoders. Also discuss type of auto encoders in	[10]	
	ŕ	detail.	TKO,	
3	a)	Draw and explain any two modern deep learning architectures.	[10]	
	b)	Differentiate between the LSTM and GRU network.	[10]	
4	a)	Explain the working of RNN with the help of suitable diagram.	[10]	
	b)	Explain how Recurrent Neural Networks (RNNs) are suited for sequential data. Compare the standard RNN architecture with Long Short-Term Memory (LSTM) networks in terms of their ability to handle long-term dependencies. Provide a real-world application where using an LSTM would be significantly more beneficial than a simple RNN and justify your reasoning.	[10]	
5	a)	Discuss the role of a loss function in training a neural network. Compare Mean Squared Error (MSE) and Cross-Entropy Loss in terms of their usage, characteristics, and impact on model performance. In which scenarios would using Cross-Entropy Loss be more appropriate than MSE? Justify your answer with a suitable example.	[10]	
	b) 🛽	Explain architecture of GAN in detail. Also comment on applications of GAN.	[10]	
	Ś		[.]	
6 	a)	What is the significance of Activation Functions in Neural Networks, explain different types Activation functions used in NN.	[10]	
45/2	b)	Explain the learning process in a neural network. How does a neural network update its weights during training? Describe the role of forward propagation, loss calculation, backpropagation, and optimization in this learning process.	[10]	
		$A^{\gamma} = A^{\gamma} = A^{\gamma} = A^{\gamma} = A^{\gamma}$		
