Paper / Subject Code: 37474 / Machine Learining

1T01876 - T.E. Computer Science and Engineering (Artificial Intelligence and Machine Learning) (Choice Based) (R-19-20 'C' Scheme)SEMESTER - VI / 37474 - Machine Learining QP CODE: 10030473 DATE: 16/05/2023

Time: 3 Hours Max. Marks: 80

Note: 1. Q.1 is Compulsory.

- 2. Attempt any 3 from remaining
- 3. Assume suitable data if necessary

Q.1 Solve any Four

A. What is Machine Learning? What are the steps in developing a machine learning application?

B. Differentiate between supervised and unsupervised learning.

[05]

[05]

C. Draw and explain biological neural networks and compare them with artificial neural networks.

[05]

D. Explain in detail the MP neuron model.

[05]

E. Explain the overfitting and underfitting with example

[05]

Q.2

A. Draw a block diagram of the Error Back Propagation Algorithm and explain with the flow chart the Error Back Propagation Concept.

[10]

B. The values of independent variable X and the dependent variable Y are given below

		•
	X	Y
	0000	2
-		3
	2	5
P2	(B)	4
,	4	6

Find the least square regression line Y=aX+b. Estimate the Y when the value of X equals 10. [10]

30473 Page 1 of 2

Paper / Subject Code: 37474 / Machine Learning

Q.3		
A.	Diagonalize the matrix A	[05]
B.	List out and explain the applications of SVD	[05]
C.	Write short note on maximum expectation algorithm	[05]
D.	What are Activation functions? Explain the Binary, Bipolar, Continuous, and Ramp	
	activation functions.	[05]
4.		
	Write a short note on (a) Multivariate Regression and (b) Regularized Regression.	[10]
В.	What is the curse of Dimensionality? Explain the PCA dimensionality reduction	
	technique in detail	[10]
Q. 5		
	Design a Hebb net to implement OR function (consider bipolar inputs and targets)	[10]
B.	Draw Delta Learning Rule (LMS-Widrow Hoff) model and explain it with a training	F4.03
	process flowchart.	[10]
0 6	Write short note on any FOLID	
	Write short note on any FOUR	[05]
	Least Square Regression for classification Differentiate between Bidge and Lesse Begression	[05]
	Differentiate between Ridge and Lasso Regression Artificial Neural Network	[05]
	Feature selection methods for dimensionality reduction	[05] [05]
/ E.	Perceptron Neural Network	[05]
