02/06/2025 SE CSE-AIML SEM-III C-SCHEME EM-III QP CODE: 10081973

TIME: 03 HOURS MAX. MARKS: 80

Note:

- 1. Question **No. 1** is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.

Q.1 Answer the following (Any four)

Marks

a. Find the Laplace transform of $t \sin^3 t$.

05

b. Calculate the Spearman's rank correlation coefficient R.

05

X	10,00	12	18	18	15	40
Y	12	18	25	25	50	25

- c. Find the constants a, b, c, d, e if $f(z) = (a x^3 + bx y^2 + 3x^2 + cy^2 + x) + i (dx^2y 2y^3 + e x y + y)$ is analytic.
- d. Find inverse Laplace transform of $tan^{-1}\left(\frac{s+a}{b}\right)$.
- Q.2 a. Evaluate by using Laplace transform of $\int_0^\infty \left(\frac{\sin 3t + \sin 2t}{te^t}\right)$ dt.
 - b. If the mean of the following distribution is 16 find m, n and variance $X : 8 \quad 12 \quad 16 \quad 20 \quad 24$ $P(X=x) : \frac{1}{8} \quad m \quad n \quad \frac{1}{4} \quad \frac{1}{12}$
 - C. Obtain the Fourier expansion of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in $(0, 2\pi)$ Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$
- Q.3 a. Find the analytic function f(z) = u + i v in terms of z if $u + v = e^x (\cos y + \sin y) + \frac{x y}{x^2 + y^2}$.
 - b. Find the coefficient of regression and hence the equations of the lines of regression for the following data

 | X | 78 | 36 | 98 | 25 | 75 | 82 | 90 | 62 | 65 | 39 | |
 | Y | 84 | 51 | 91 | 60 | 68 | 62 | 86 | 58 | 53 | 47 |
 - c. Using convolution theorem Find the inverse Laplace transform of $\frac{1}{(s^2 + 4s + 13)^2}$

Q.4 a. Obtain Fourier series of $f(x) = |\sin x|$ in $((-\pi, \pi))$.

- 06
- b. If X denotes the outcome when a fair die is tossed, find the moment generating function of x and hence find the mean and variance of X.
- 06
- c. Evaluate by using Laplace transforms of $\int_0^\infty e^{-t} \left(t \int_0^t e^{-4u} \cos u \, du \right) dt$. **08**
- Q.5 a. Find the orthogonal trajectories of family of curves $3 x^2y + 2x^2 y^3 2y^2 = c$.

06

b. Find the inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$.

06

c. Fit a second-degree parabolic curve to the following data and estimate the

08

Production in 1982.

11000000000000000000000000000000000000											
Year (X)	1974	1975	1976	1977	1978	1979	1980	1981			
Production	12	14 A	26	42	40	50	52	53			
(y)(in	185	3		Y.	200		5	5			
tons)	5	200	2	(200	4	C			

- **Q.6** a. Obtain half range Sine series for $f(x) = x x^2$ in $0 \le x \le 1$. Hence show that $\frac{\pi^3}{32} = \frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} \frac{1}{7^3}$
 - b. Show that the function $v = e^{2x}(y \cos 2y + x \sin 2y)$ is harmonic. And find its corresponding analytic function f(z) = u + iv.
 - c. Find the value of k if the function $f(x) = k x^2 (1 x^3)$, $0 \le x \le 1$ f(x) = 0 otherwise.

 Is a probability density function. Also find $p(0 \le x \le \frac{1}{2})$ find mean and variance.