Paper / Subject Code: 49371 / Engineering Mathematics-III

June 4, 2024 02:30 pm - 05:30 pm 1T01873 - S.E. Computer Science & Engineering (Artificial Intelligence & Machine Learning) (R-2019)(C-Scheme) SEMESTER - III / 49371 - Engineering Mathematics-III QP CODE: 10055380

Time: 3 hours Marks: 80

N.B. (1) Question No. 1 is compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Use of Statistical Tables permitted.
- (4) Figures to the right indicate full marks

Q1 A If
$$f(t) = (\sqrt{t} + \frac{1}{\sqrt{t}})^2$$
, find L[f(t)] and hence find L{ e^{2t} f(t)}

B Find L⁻¹
$$\{\frac{1}{s(s^2+4)}\}$$
 5

- C Obtain half-range cosine series for f(x) = x(2-x) in 0 < x < 2
- D Find moment generating function of the following distribution.

 Hence find mean and variance.

X	A.	1	\$ 3	3	4	A V	5	A
P(X)	70,	0.4	0.1	15	0.2	16	0.3	

Q2 A Find the orthogonal trajectories of the family of curves 6
$$e^{-x}[x\sin y - y\cos y] = c$$

B Find L
$$\{t(\frac{cost}{e^t})^2\}$$

C Find the Fourier series expansion for
$$f(x) = 2$$
, $-2 < x < 0$.
$$= 0, \quad 0 < x < 2$$
Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$

Q3 A Find
$$L^{-1}\{\log(1-\frac{1}{s^2})\}$$

- B Find the analytic function f(z)=u+iv where $u+v=\frac{sin2x}{cosh2y-cos2x}$, using 6 Milne-Thompson's Method.
- C Fit a parabola $x = a + by + cy^2$ for the following data:

Ì	X:	3	1	5	2		3	4	5
<i>y</i>	Y:		10	15	12 🔟	0	15	14	15

Paper / Subject Code: 49371 / Engineering Mathematics-III

- Q4 A The first 4 moments of a distribution about origin of the random variable X are -1.5, 17, -30 and 108. Compute Mean, variance, μ_3 and μ_4 .
 - B Consider the equations of regression lines 5x-y=22 and 64x-45y=24. 6 Find \bar{x} , \bar{y} and correlation coefficient r.
 - C Find L⁻¹{ $\frac{(s+3)^2}{(s^2+6s+13)^2}$ }
- Q5 A Find the Laplace transform of cos³t cos5t.
 - B Find Spearman's rank correlation coefficient for the data below:

				/			_	
X:	32	55 49	60	43	37	43	19 10	20
Y: <	40	30 70	20	30 🔏	50	72 6	50 45	25 🗸
6.7	7			/ >	~		-	

C Obtain Fourier Series for $f(x) = \frac{1}{2}(\pi - x)$ in $(0, 2\pi)$.

Hence, deduce that $\frac{\pi}{4} = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$

Q6 A If f(x) is probability density function of a continuous random variable X, find k, mean and variance.

$$f(x) = \begin{cases} kx^2, & 0 \le x \le 1\\ (2-x)^2, & 1 \le x \le 2 \end{cases}$$

B Check if there exists an analytic function whose real part is 6 $u = \sin x + 3x^2 - y^2 + 5y + 4$. Justify your answer.

8

C Evaluate the following integral by using Laplace transforms

$$\int_0^\infty e^{-2t} \left[\int_0^t (\frac{e^{3u} \sin^2 2u}{u}) du \right] dt$$