Paper / Subject Code: 49372 / Discrete Structures & Graph Theory

June 6, 2024 02:30 pm - 05:30 pm 1T01873 - S.E. Computer Science & Engineering (Artificial Intelligence & Machine Learning) (R-2019)(C-Scheme) SEMESTER - III / 49372 - Discrete Structures & Graph Theory QP CODE: 10056489

Duration: 3 Hours Total Marks: 80

- **N.B.**: 1) Question Number 1 is compulsory
 - 2) Solve any three questions from the remaining questions
 - 3) Make suitable assumptions if needed
 - 4) Assume appropriate data whenever required. State all assumptions clearly.

Q.1 Solve any four of the following questions.

a. What is a tautology? Check whether the following logical expression is tautology?

 $[(p \rightarrow r) \land (\sim q \rightarrow p) \land \sim r] \rightarrow q$

- **b.** State the Pigeonhole principle and show that if any five numbers form 1 to 8 are chosen, then two of them will add to 9.
- **c.** Convert the following into CNF form.

 $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$

d Given $S = \{1, 2, ..., 10\}$ and a relation R on S, where $R = \{(x, y) | x + y = 10\}$. Is it reflexive, symmetric, transitive, antisymmetric?

5

8

8

8

- e Define the following terms
 - 1. Planer graph 2. Cut Vertex 3.Chain 4. Monoid 5.Group
- Q.2 a Let $A = \{p,q,r,s\}$ and let $R = \{(p,p),(p,q),(p,r),(q,p),(q,q),(r,p),(q,r),(r,q),(r,r),(s,s)\}$. Show that R is an equivalence relation. Determine the equivalence classes and find the rank of R.
 - **b.** Show that A={0,3,6,9,12} is a ring w.r.t. the operation of addition & multiplication modulo 15.
 - c Explain two different types of Quantifiers with example?

 Represent the following sentences using First Order logic
 - i) Some students took GenAI.
 - ii)Every student who takes GenAI passes it.
- **Q.3** a What is an Abelian Group? Let $G = \{1,2,3,4,5,6,7\}$

i) Prepare the composition table w.r.t the operation of multiplication modulo 8.

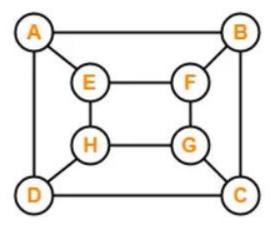
- ii) Check whether it is an Abelian group? Justify your answer.
- b Define minimum hamming distance. Find the code words generated by the parity check matrix H given below.

101

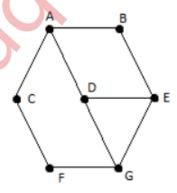
H = 0.11

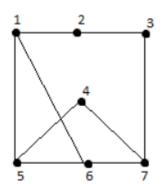
110

100


0.1.0

001


c


Determine whether the following graph is Eulerian or Hamiltonian or both.

Justify your answer.

- Q.4 a Define function. What are three different types of functions.. Consider the function f and g from N x N to N given by f(x,y) = 2x+y and g(x,y)=xy, identify its type.
 - Let $A = \{a,b,c,d,e\}$ and let R be a relation on A. Let $R = \{(a,a),(a,c),(b,b),(c,d),(c,e),(d,a),(e,b),(e,e)\}$
 - Compute transitive closure using Warshall's algorithm
 Prove using Mathematical Induction that sum of cubes of three consecutive integers is divisible by 9.
- Q.5 a Let $X = \{1,2,3,4,6,24,36,72\}$ and $R = \{(x,y) \in R \mid x \text{ divides } y\}$ i) Write the pairs in a relation set R.
 - ii) Construct Hasse diagram.
 - iii) Mention Chains and Anti Chains from above set.
 - iv) Is it a lattice?
 - **b** Find the number of integers between 1 to 500 that are not divisible by 5,6, or 8?
 - c Check whether the following graphs are Isomorphic or not? Justify

4

8

56489

Page 2 of 3

Q.6.	a	Draw the Hasse Diagram of D ₇₂
		i)Find the complement of each element
		ii) Check whether it is a Distributive Lattice
	b	Let $f(x) = x + 3$, $g(x) = x - 3$ and $h(x) = 3x$ for $x \in R$, where R is the set of real numbers.
		Find i)g \circ h ii) f \circ g. i)g \circ h \circ f ii) f \circ h \circ g
	c	Find the generating functions for the following sequences:
		a. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7,
		b. 6, -6, 6, -6, 6, -6,