BE(CIVIL) | Sem VII | S& H WM | R-19 Cscheme

(3Hours)

Max Marks=80

05 05

05

05

Note 1. Question No.1 is compulsory

- 2. Attempt any three questions from remaining questions.
- 3. Assume any suitable data where ever required.
- 4. Figures to the right indicate full marks.

Q.1 Attempt any four

b

a.	Explain	with	neat	sketch	'Hauled	Container	System'	
----	---------	------	------	--------	---------	-----------	---------	--

Estimate density of solid	waste sample from the giv		
Components	% by weight	Typical density(kg/m3)	
Food waste	30	290	

		density(kg/m3)
Food waste	30	290
Glass	5	195
plastic 45	15	65
Paper O	30	85
Wood	13	240
Ferrous Metal	5	320
Miscellaneous	2	240

- What is landfill? Explain any one type.
- Explain the term 'colour coding' as is used in relation to the biomedical wastes, and 05 how does it help on safe disposal of bio-medical wastes?
- What is called as optimization of collection route?
- Estimate the theoretical volume of methane gas that could be expected from anaerobic 10 digestion of one tonne of waste having the composition of C55H110O35N1.

$$C_a H_b O_c N_d + \left(\frac{4a-b-2c-3d}{4}\right) H_2 O \rightarrow \left(\frac{4a-b-2c-3d}{8}\right) C H_4 + \left(\frac{4a-b+2c+3d}{8}\right) C O_2 + dN H_3$$

- Explain physical, chemical and Biological transformation of solid waste. 10
- Explain the working of municipal incinerator with neat sketch. Explain the air 10 pollution control measures adopted in conjunction with incinerator.
 - What is Leachate? How it is formed? How its movement is controlled? 10

Page 1 of 2

Program Code:

Paper / Subject Code: 42080 / Solid hazardous waste management (DLOC - IV)

Q.4 a. What are the different characteristics of hazardous waste? How such a waste stored, transported and disposed.

10

10

b. Estimate the energy content of solid waste (on dry basis and ash free dry basis) with the following composition is given in a table below.

Components	% by Mass	Energy KJ/Kg
	35	4650
Food wastes	15	16750
Paper	5 5	16300
Cardboard	10	32600
Plastics Some	20	6500
Garden Trimmings	6 12	18600
Wood	3	700
Tin Cans	3 3	() () () () () () () () () ()

Q.5 a. Determine the amount of air required to oxidize one tonne of waste with the chemical composition C₅₀H₁₀₀O₄₀N₂.

$$C_aH_bO_cN_d + (\frac{4a+b-2c-3d}{4})O_2 \rightarrow aCO_2 + \frac{b-3d}{2}H_2O + dNH_2O_2 + \frac{b-3d}{2}H_2O + dNH_2O_2 + \frac{b-3d}{2}H_2O_2 + \frac{b$$

b. Describe the various methods of construction and demolition waste management, including recycling, reuse, and disposal, and explain the advantages and challenges associated with each approach.

- Q.6 Write short note on any four
 - a. IOT in SWM
 - b. Vermi composting
 - c. E-waste management
 - d. Legal issues related to solid waste disposal
 - e. Transfer station
