9.5923

Q.4 (a) Using Green's Theorem evaluate $\int_c (x^2 - y) dx + (y^2 + x) dy$ and c (6) is closed curve of the region bounded by y = 4 and $y = x^2$.

) Samples of two types of electric bulbs were tested for length of life

and following data were obtained

ESS S	Type,	Type II
Number of samples	80	7.6
Mean of samples (in hour)	1134	1024
Standard Deviation(in hour)	35	40

Test at 5% level of significance whether the difference in the sample means is significant.

(c) In a normal Distribution, 30% of students scored below 35 and 10% (8) scored above 60. Find the mean and standard deviation.

Q.5 (a) The standard deviation from two random samples of sizes 9 and 13 are 1.99 and 1.9. Can the samples be regard as drawn from normal population with same standard deviation? $(F_{(8,12)}(0.025) = 3.51, F_{(12,8)}(0.025) = 4.20)$

(b) Use Gauss's Divergence Theorem to evaluate $\iint_{S} \overline{N} \cdot \overline{F} \, ds$, where $\overline{F} = 4xi - 2y^{2}j + z^{2}k$ and S is region bounded by $x^{2} + y^{2} = 4$, z = 0, z = 4.

(c) Obtain both Line of regressions for the data given below (8)

X	00	65	66	67	67	68	.69	70	72
Y		67	68	65	68	72	72	69	71

Also find X for Y = 70.

Q.6 (a) Evaluate $\int_c \frac{z+3}{(2z^2+3z-2)} dz$, where c is the circle |z-i|=2. (6)

(b) The following data relate to marks obtained by 11 students in 2 tests, one held at the beginning of the year and the other at the end of the

year after intensive coaching: 20 19 18 20 18 21 Test 23 16 19 22 20 18 24 20 24 20 22 20 Test

(c) The following table gives the number of accidents in a district during a week. Apply χ^2 test to find whether the accidents are uniformly distributed over the week.

 Day
 Sun
 Mon
 Tues
 Wed
 Thurs
 Fri
 Sat

 No. of days
 13
 12
 11
 9
 15
 10
 14

29170