(3 Hours) 1) Question No.1 is compulsory. Note: 2) Attempt any THREE from the remaining. 3) Figures to the right indicate full marks. A) Find the values of constants a,b,c and d if 0.1 $f(z) = (x^2 + 2axy + by^2) + i(cx^2 + 2dxy + y^2)$ is analytic 5 Find the Eigen Value of $A^3 - 3A^2$ B) Where A = -1 -4 -3 5 Find the Laplace Transform of t sin at 5 Find the Fourier series expansion for f(x) = x defined in (-1,1) A) If $L[f(t)] = \frac{s}{s^2 + s + 4}$ find $L[e^{-3t} f(2t)]$ B) Find the Fourier series expansion for f(x) = x defined in $(-\pi, \pi)$ with period 2π Q.2 Find the analytic function f(z) with the real part $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ Show that the function $u = x^3 - 3xy^2$ is harmonic function. Q.3 Hence find the corresponding analytic function and harmonic conjugate. A string is stretched and fastened to two points distance L apart motion is 6 started by displacing the string in the form $u = \alpha \sin(\frac{\pi x}{L})$ from which it is released at time t = 0. Show that the displacement of a point at a distance X from one end at time t is given by $u(x,t) = \alpha \sin\left(\frac{\pi x}{L}\right) \cos\left(\frac{\pi ct}{L}\right)$ Obtain the Fourier series expansion of f(x) = |x| where $-\pi \le x \le \pi$ 8 Find Laplace transform of $e^{-4t} \int_0^t u \sin 3u \, du$ Find Inverse Laplace transform of $\frac{2s+3}{s^2+2s+2}$ Verify Cayley – Hamilton theorem for the matrix A and hence find A^{-1} & A^4 8 where A = Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - 16 \frac{\partial u}{\partial t} = 0$, $0 \le x \le 1$ 6 subject to the condition u(0,t) = 0, u(1,t) = 100t, u(x,0) = 0, $h = \frac{1}{4}$ for one -time step. Find the inverse Laplace transform of $\log \left(\frac{s+a}{s+b}\right)$ Show that the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 7 \end{bmatrix}$ is diagonalizable. Find transforming matrix and diagonal Matrix. 6

Q.6 A) Evaluate ∫₀[∞] e^{-3t} t sint dt using Laplace transform.
B) Find the solution u_t = u_{xx} subject to u(0,t) = 0,u (5,t) = 0,u (x,0) = x² (25 - x²)
b using Schmidt method taking h = 1 up to 3 seconds.
C) Find the inverse Laplace transform of s/(s²+1)² using convolution theorem.

QP code

83689

prog. code