Paper/Subject Code: 50821/Engineering Mathematics-III 12/11/2024 SE/Civil sem-III / CBCGS | R-19 | C-scheme | Engg. Math-III | SH-24

	(3 Hours) Total Marks :80	Total Marks :80	
Q1	Note: 1) Question No.1 is compulsory 2) Attempt any Three from the remaining	6569	
A)	Find $L\left\{\int_0^t e^{-u} u^n du\right\}$	5	
B)	Prove that $f(z) = e^z$ is analytic everywhere. Hence find $f'(z)$	5	
C)	Find half range sine series of $f(x) = x$ in $(0, \pi)$	×5	
D)	If $A=[a_{ij}]$ is a matrix of order 3×3 such that $a_{ij} = \begin{cases} 1, & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}$	5	
	Find an eigen value of i) A ii) adjoint of A		
01	iii) $A^2 - 2A + 2I$		
Q2 A)	If $L[f(t)] = \frac{1}{9s^2 - 3s + 1}$ then Find $L[te^t f(3t)]$	6	
D)			
B)	Find Fourier series for $f(x) = x$, if $0 < x < 2\pi$ and $f(x + 2\pi) = f(x)$	6	
C)	Find analytic function $f(z)$ in terms of z where $u = y^2 - x^2$	8	
Q3 A)	A string is stretched and fastened to two points distance l apart. Motion is started by displacing the string in the form $y=a\sin(\pi x/l)$ from which it is released at time $t=0$. Show that the displacement of a point at a distance x from one end at time t is given by $y=a\sin(\pi x/l)\cos(\pi ct/l)$	6	
B)	Prove that	6	
C)	$u = e^x cosy$ is harmonic function hence find it's harmonic conjugate function Find the Fourier Series for $f(x)$ in $(-\pi, \pi)$ where	8	
	f(x) = x		
Q4			
A)	Evaluate $\int_0^\infty \left[\frac{\cos 2t - \cos 4t}{t}\right] dt$	6	
B)	Find Inverse Laplace transform of $\frac{s+1}{(s-1)^2(s-2)}$	6	
(C)	Is the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ Diagonalizable? If so find the Diagonal form of A and transforming matrix of A	8	

Q5 A) If $A=[a_{ij}]$ is a matrix of order 3×3 such that

$$a_{ij} = \begin{cases} 2, & \text{if } i = j \\ -1, & \text{if } i + j = 3 \text{ or } 5 \\ 1, & \text{if } i + j = 4 \text{ and } i \neq j \end{cases}$$
Compute: $A^9 - 6A^8 - 9A^7 - 4A^6 + A^5 - 12A^4 - 18A^3 - 8A^2 + 2A + I$

 $0 \le x \le 1$ subject to the condition u(0, t) = 0, u(1, t) = 100t,

Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - 16 \frac{\partial u}{\partial t} = 0$,

u(x, 0)=0 h=0.25 for one-time step

Find inverse Laplace transform of (i) $log[z^2 - 4]$ (ii) $\frac{s+2}{(s+16)^2}$ c)

Q6 Find the Laplace Transform of $\int_0^t \cos(u)\sin(u)du$ A)

Find the solution of B)

$$4\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0,0 < x < 8, \quad u(x,0) = 4x - \frac{1}{2}x^2, u(0,t) = 0, u(8,t) = 0$$

Taking $h = 1, k = \frac{1}{8}$ for $0 \le t \le 5/8$

Where h is the step length for x axis and k is the step size in time direction using Bender -Schmidt method

Find inverse Laplace transform of $\frac{1}{(s^2+16)((s^2+49))}$ using convolution theorem