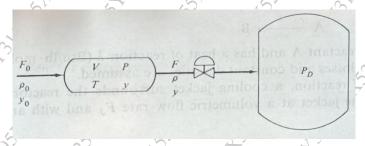
Paper / Subject Code: 52571 / Modelling Simulation and Optimization

14-May-2024 10:30 am - 01:30 pm 1T00538 - B.E.(Chemical Engineering)(SEM-VIII)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 52571 - Modelling Simulation and Optimization QP CODE: 10055156

(3 Hours) Total Marks: 80

N.B.

- 1. Question No. 1 is Compulsory.
- 2 Attempt any Three Questions from remaining Five Questions
- 3. Assume Suitable Data if needed and Justify the Same
- 4. Figures to the right indicate full marks.


Que.1

a)	Explain classification of mathematical models	49 43	, , ,	[05]
b)	Write applications and limitation of ANNs in Chemical	Engineering	\tag{5}	[05]
c)	Distinguish between Sequential Modular Approach and l	EquationOrient	ed 🗥	[05]
	Approach S 10 10 10 10 10 10 10 10 10 10 10 10 10	(a)		4
d)	Discuss principles of formulation of process models	1.62°	15	[05]

Que.2

Derive mathematical model for describing the system, gas phase pressurized [10 CSTR with reaction 2A ⊆ B with k₁ and k₂ are rate constant of forward and backward reaction resp. The forward reaction is 1.5th order in A; reverse reaction is first order in B. The mole fraction of reactant A in the reactor is y. The pressure inside the vessel is P (absolute). Both P and y can vary with time. The volume of the reactor V is constant. An isothermal system can be assumed. The flow of the reactor passes through a restriction (control valve) to another vessel which is held at a constant pressure P_D, (absolute). The outflow will vary with the pressure and the composition of the reactor.

Assumptions: An isothermal system and perfect gases

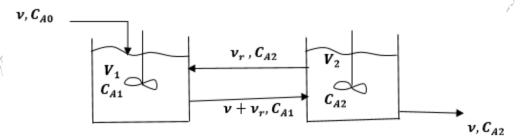
- b) The flow rate $F(m^3/s)$ of oil passing through two perfectly mixed tanks in series is constant. The density ρ (kg/m³) of the oil is constant. The volume of tank 1 is V_1 and that of thank 2 is V_2 . The temperature of oil entering the first tank is T_0 . The temperatures in the two tanks are T_1 and T_2 . A heating coil in the first tank uses steam to heat the coil. Let Q_1 be the heat addition rate in the first tank.
 - a. Derive the mathematical model for this system
 - b. Perform DOF for this system

55156

Page 1 of 3

Que.3 Feed stream with pure species A and B are mixed with recycle stream enter [20] CSTR, where following reactions take place

$$A + B \to C$$


$$C + B \to P + E$$

$$P + C \to G$$

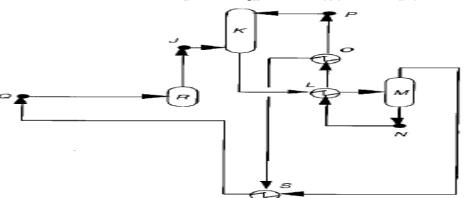
Here, C is an intermediate, P is main product, E is by product and G is oily waste. The plant consist of reactor, a heat exchanger to cool reactor effluent, a decanter to separate waste product G from reactants and other products and a distillation column to separate product P. Due to formation of an azeotrope some of product (equivalent to 15 wt% of mass flow rate of component E) is retained in the column bottom. Most of the bottom product is recycled to reactor and rest is purged. Construct a Williams-Otto flowsheet and develop the process equations.

Que.4

An isothermal irreversible reaction $A \xrightarrow{k_1} B$ takes place in a liquid phase constant volume reactor. The mixing is not perfect. Observation of flow patterns indicates that a two tank system with backmixing as shown in the sketch below. Assuming, v and v_r are constant, write the equations describing system.

The model equation for a three CSTR in series is given below, At t=0, CA₀=1.8 [10] kmol/m³, CA₁(0)=0.4 kmol/m³, CA₂(0)=0.2 kmol/m³, CA₃(0)=0.1 kmol/m³, τ =2, k₁=k₂=k₃=0.5, find concentration in all the reactor at t=0.2 using Runge Kutta-4th order method take the step size in time as 0.1?

$$\frac{dC_{A1}}{dt} = \frac{1}{\tau} (C_{A0}) - \left(\frac{1}{\tau} + K_1\right) C_{A1}$$


$$\frac{dC_{A2}}{dt} = \frac{1}{\tau} (C_{A1}) - \left(\frac{1}{\tau} + K_2\right) C_{A2}$$

$$\frac{dC_{A3}}{dt} = \frac{1}{\tau} (C_{A2}) - \left(\frac{1}{\tau} + K_3\right) C_{A3}$$

55156

Que.5

a) Determine the tear stream for the following flowsheet

b) Solve the fixed point problem given by

$$x_1 = 1 - 0.5 \exp(0.7(1 - x_2))$$

$$x_2 = 2 - 0.3 \exp(0.5(x_1 + x_2))$$

Using direct substitution method starting from $x_1 = 0.8$ and $x_2 = 0.8$

Q.6A A fluid of constant density ρ is pumped into a cone – shaped tank of total [10 volume $V = \frac{H\pi R^2}{3}$. The flow out of the bottom of the tank is proportional to the square root of the height of liquid in the tank. Derive the relation describing the system.

- i. Solve the multivariable function $f(Y) = y_1^2 + y_1 (1-y_2) + y_2^2 y_2 y_3$. Comment 05 whether the solution gives maxima or minima of the function
- **ii.** What are artificial neural networks? How an artificial neuron model can be 05 compared with biological neuron model