4/12/2024 CHEMICAL SEM-VIII C SCHEME DLOC-V ESD QP CODE: 10068614

[3 Hours] [Total Marks: 80]

N.B.: (1) Question No 1 is compulsory

- (2) Attempt any three questions out of remaining five questions
- (3) Assume suitable data if necessary and indicate it clearly.
- (4) Figures to the right indicate full marks.
- Q.1. Solve the following (Any Four)

20

- (a) Explain any two energy efficient techniques for steam system in industry.
- (b) What is pinch temperature and how its knowledge is useful during energy integration?
- (c) Explain reboiler flashing in distillation column.
- (d) Which different energy sub audits are carried out in industry?
- (e) Discuss advantages of waste heat recovery in process industries.
- (f) What are the merits of wind energy?
- Q.2. (a) Consider the system where heat is being exchanged among hot & cold streams to meet MER target for which data is given below. If $\Delta T_{min} = 20^{0}$ C, find the minimum hot & cold utility requirements as well as the pinch temperatures for this system.

Stream No.	Ts (⁰ C)	Tt (°C)	mCp (kW/ ⁰ C)
100	180	40	10
2	5 160	40	20
S 3 A	60	220	A 15 A
4 A	30	180	115

- (b) Discuss various techniques to improve energy efficiency of "Compressed Air system".
- Q.3. (a) Explain working of any two waste heat recovery equipments.

10

10

12

- (b) Explain various thermodynamic cycles supporting working of cogeneration system.
- Q.4. (a) Consider a process for which hot and cold stream data is given below:

Stream No.	Ts (⁰ C)	Tt (°C)	mCp (kW/ ⁰ C)
15V	150	60 6	5
-2	90	60	16
S 3 5	25	100	6
9 4	20	125	5

Design a feasible HEN for this system at ΔT_{min} = 20 ^{0}C if $Q_{H,min}$ = 155 kW; $Q_{C,min}$ = 110 kW; ΔT_{min} = 20 ^{0}C ; Hot Pinch temperature = 90 ^{0}C

(b) Describe the rules of heat exchanger networking.

08

68614

Q.5.	(a) (b)	Write in detail about energy from waste and biomass Explain energy audit methodology. 10
Q.6.	Writ (a) (b) (c) (d) (e)	te short notes on any four of the following: Energy profile Effect of waste heat recovery on pollution Pros and cons of solar energy Need of energy conservation Benefits of HEN

		AND THE REAL PROPERTY OF THE P
No.	AST AST	
E C		

68614