(3 Hours)

Total Marks: $\mathbf{8 0}$
N.B.

1. Question No. 1 is Compulsory.

2 Attempt any Three Questions from remaining Five Questions
3. Assume Suitable Data if needed and Justify the Same
4. Figures to the right indicate full marks.

Que. 1

a) Explain classification of mathematical methods
b) Write applications and limitation of ANNs in Chemical Engineering
c) Give the Difference Sequential and Equation oriented Simulation
d) Differentiate between lumped and distributed parameter models

Que. 2
a) Three CSTR's are connected in a series of reaction $A \rightarrow B$ is taking place in each reactor by a first order reaction occurring in the liquid. Assume both temp and the liquid volume are constant (Isothermal and constant holdup). The rate constant in each reactor is $\mathrm{k}_{1}, \mathrm{k}_{2}$, and k_{3}. Volume of reactor is $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{3} respectively. A reactant A is fed to first reactor at a flow rate F_{0} at concentration $\mathrm{C}_{\mathrm{A} 0}$. Derive mathematical model for the above system.

b) A perfectly mixed, isothermal CSTR has an outlet weir. The flow rate over the weir is proportional to the height of liquid over the weir, $h_{\text {ow }}$ to the 1.5 power. The weir height is h_{w}. The cross-sectional area of the tank is A. Assume constant density. A first order reaction takes place in the tank: $\mathrm{A} \xrightarrow{k} B$. Derive the equation describing the system

Que. 3 Feed stream with pure species P and Q are mixed with recycle stream enter CSTR, where following reactions take place

$$
\begin{gathered}
P+Q \rightarrow X \\
X+Q \rightarrow S+R \\
S+X \rightarrow Z
\end{gathered}
$$

Here, X is an intermediate, S is main product, R is bi product and Z is oily waste. The plant consist of reactor, a heat exchanger to cool reactor effluent, a decanter to separate waste product Z from reactants and other products and a distillation column to separate product S. Due to formation of an azeotrope some of product (equivalent to $15 \mathrm{wt} \%$ of mass flow rate of component R) is retained in the column bottom. Most of the bottom product is recycled to reactor and rest is purged. Construct a Williams-otto flowsheet and develop the process equations.

Que. 4

a) Solve the fixed point problem given by

$$
\begin{aligned}
& x_{1}=1-0.5 \exp \left(0.7\left(1-x_{2}\right)\right) \\
& x_{2}=2-0.3 \exp \left(0.5\left(x_{1}+x_{2}\right)\right)
\end{aligned}
$$

Using direct substitution method starting from $x_{1}=-1$ and $x_{2}=-1$.
b) Maximize $f(x)=12 x-3 x^{4}-2 x^{6}$ using one dimensional search method (Bisection
method) over a closed interval $(0,2)$ with a tolerance level of $\varepsilon=0.01$

Que. 5

a) For the flow diagram given below find the partitions and develop precedence order

b) Find solution of the following equation using fixed point iteration (direct Substitution method) take initial guess as $\mathrm{x}_{1}=5$ and $\mathrm{x}_{2}=5$ and $\mathrm{x}_{3}=0$

$$
\begin{aligned}
& f_{1}(x)=x_{1}^{2}+x_{2}-37=0 \\
& f_{2}(x)=x_{1}-x_{2}^{2}-5=0 \\
& f_{3}(x)=x_{1}+x_{2}+x_{3}-3=0
\end{aligned}
$$

Que. 6 a) The model equation for three CSTR in series is given below, At $t=0$, $\mathrm{CA} 0=1.8 \quad \mathrm{kmol} / \mathrm{m}^{3}, \quad \mathrm{CA} 1 \quad(0)=0.4 \quad \mathrm{kmol} / \mathrm{m}^{3}, \quad$ CA2 $(0)=0.2$ $\mathrm{kmol} / \mathrm{m}^{3}, \mathrm{CA} 3(0)=0.1 \mathrm{kmol} / \mathrm{m}^{3}, \tau=2, \mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3=0.5$, find concentration in all the reactor at $\mathrm{t}=0.1$ using Runge Kutta $-4^{\text {th }}$ order method, take the step size in time as 0.1 ?

$$
\begin{aligned}
& \frac{d C_{A 1}}{d t}=\frac{1}{\tau}\left(C_{A 0}\right)-\left(\frac{1}{\tau}+K_{1}\right) C_{A 1} \\
& \frac{d C_{A 2}}{d t}=\frac{1}{\tau}\left(C_{A 1}\right)-\left(\frac{1}{\tau}+K_{2}\right) C_{A 2} \\
& \frac{d C_{A 3}}{d t}=\frac{1}{\tau}\left(C_{A 2}\right)-\left(\frac{1}{\tau}+K_{3}\right) C_{A 3}
\end{aligned}
$$

Q6 B Write short note on
a) Explain partitioning, precedence ordering and tearing in flow sheet simulation
b) What are artificial neural networks? How an artificial neuron model can be compared with biological neuron model

