Paper / Subject Code: 41972 / Chemical Engineering Equipment Design

14/11/2024 CHEM SEM-VII C SCHEME CEED QP CODE: 10065807

Total Marks: 80
St. The Capture of th
20
15
following data: MoC = S S bolt material = 140 N/mm2), MoC: SS orcement. ssure vessel. 08
J/mm ² N/mm ³ N/mm ² = 1170 mm, of safety = 2 thickness,

Q.3(b)	Explain classification of heat exchange Classification on the basis of TEMA.	rs on the basis of different methods. Also explain	08
Q 4 (a)	The available specifications are: Operating temperature and pressure – 1 Tray spacing – 0.6 m. Weir height – 60 mm. Tray loading with liquid – 110 kg/m2 Corrosion allowance – 1.5 mm Design pressure – 0.5 N/mm2	ameter and 42 m in height is to be installed. 60 C and 0.45 N/mm2. Skirt height – 3.0 m. Top space disengagement – 1.2 m. Bottom space separation – 1.8 m Wind force acting over vent – 1100 N/m2 Insulation thickness – 120 mm. 8 N/mm2 Welded joint efficiency – 0.80 Density of insulation – 500 kg/m3. mm Weight of ladder – 300 N/m.	10
	Weight of 280 mm outer diameter pipe	- · · · · · · · · · · · · · · · · · · ·	
Q 4(b)	Write difference between tray column	and packed column.	08
Q 5(a)	1	uid – Water, I.O.C. – Carbon Steel, 2	10
	Tube and tube sheet material – S.S., Outside diameter – 20mm, Design Pressure – 1.5N/mm ² Design should include- (a) Shell,	No. of tubes – 60 Fluid – Carbon Dioxide, Permissible stress for S.S. – 105N/mm ² (b) Head, (c) Flange joint (shell and tube sheet)	

Afrançain Thickness (in cont)							
Account Diameter	Cast	Carbon Strel (including Corrosion Allowance)	Copper and - Copper Alloys	Aluminium and Aluminium Albys	Austeniție Stanieaa Stool	Nickel	Monel
158	10	- 5	3.2	5	3.2	3.2	3.2
200-	10	6.3	3.2	5	3.2	3.2	3.2
250	10	6.3	3.2	5	3.2	3.2	2.2
303	33	6.0	3.2	5	3.2	3.2	2.2
150	13	6.3	5	5	3.2	5	3.2
400	13	6.3_	5	6.3	3.2	5	3.2
500	13	1	6.3	8	32	6.3	3.2
500	16	1	6.3	8	5	6.3	5
700	16	10	8.3	10	5 5	-8	3
800	16	10	10	11.2	6.3	8	6.3
900	19	10	10	11.2	63	10	6.3
1000	19	12	11.2	12.5	6.3	11.2	6.3
1100	22	11.2	11.2	14	6.3	11.2	5.3

Q5 (b) Design storage tank for following data: (Shell with varied thickness)

Tank diameter = 24 m

Tank ht = 16m

Density of liquid = 980 kg/m^3

Superimposed load = 1200 N/m^2

MoC = CS

Permissible stress = 165 N/mm²

Density of MoC = 7800 kg/m^3 Corrossion allowance = 2 mm

 $E = 2*10^5 \text{ N/mm}^2$

08

20

Table DI : Plates					
Thickness (mm)	Width (mm)	Length (mm)			
5. 6. 7. 8. 10	900, 1000, 1100, 1250, 1400, 1500, 1600, 1800, 2000, 2200, 2500	4500, 5000, 5600, 6300, 8000, 10000			
12 14, 16, 18, 30, 22, 25, 28, 32	1500, 1600, 1800, 2000, 2200, 2500, 2800	4500, 5000, 5600, 6300, 7100, 8000, 9000, 10000			
36, 40, 45, 50	1500, 1600, 1800, 2000, 2200, 2500, 2800, 3000, 3200	4500, 5000, 5600, 6300, 7100, 8000, 9000, 10000			
56, 63, 75, 80	1500, 1600, 1800, 2000, 2200, 2500	4500, 5000, 5600, 6300, 7100, 8000			
90, 100, 110, 120	1600, 1800, 2000	5000, 5600, 6300			

- Q.6 A high pressure compound cylinder consists of an inner cylinder of inner diameter 200 mm and outer diameter 250 mm. on it is shrunk fit a tube of external diameter of 300 mm. the shrink fit should be so done that the contact pressure of the two tube surfaces do not exceed 7.85 Mpa. the cylinder is then subjected to an internal pressure of 83 Mpa.
 - 1. Calculate the original dimensions of the tubes (deformation) if the coeff of thermal expansion is $12 * 10^{-6}$ / 0 C.
 - 2.Calculate by what temperature the outer tube should be heated to achieve the necessary shrink fit (Assume $E = 200 * 10^3 \text{ N/mm}^2$)
 - 3.Also find the reduction in max stress by compounding when compared to a single tube of inner dia of 200 mm and outer dia of 300 mm.
 - 4.plot the stress distribution.