5/12/2024 CHEMICAL SEM-VI C SCHEME CRE-II QP CODE: 10066606

(3 Hours) [Total : 80]

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining questions.
 - (3) Assume suitable data wherever necessary.
- Q 1. Answer the following questions:

(20)

- (a) In an experiment to determine the pore volume and catalyst particle porosity the following data were—obtained on a sample of activated silica (granular, 4 to 12 mesh size): Mass of catalyst sample placed in chamber = 101.5 gm Volume of helium displaced by sample = 45.1 gm Volume of mercury displaced by sample = 82.7 cm3—Calculate the pore volume, density of solid material in the catalyst & the porosity of the silica gel particles.
- (b) Discuss different controlling mechanisms in Non catalytic heterogeneous reactions.
- (c) Explain various steps involved in a solid catalyzed reaction...
- (d) Write a short note on the packed bed reactor.
- Q.2.(a) Explain Brunner Emmett Teller method for determination of surface area. (10)
 - (b) Spherical solid particles containing 'B' are roasted at constant temperature in an oven by gas constant composition. Solids are converted to give a firm non flaking product according to the Shrinking core model (SCM). From the following conversion data determine the rate controlling mechanism for the transformation of solid. (10)

 Data:

dp,mm	XB	t,s
2	0.875	1
SI &	2 1 25	1

- Q.3. (a) Develop conversion time relationship for Shrinking spherical particles when resistance through the ash layer is controlling. (10)
 - (b) Explain in detail the contacting patterns in fluid-fluid reactions.

Q.4. a) The effluent concentration readings given below represent a continuous response to a pulse input into a closed vessel.

t, mir	1	0	1	2	3	4	5	6	7	8	9	10	12	14
С	Pulse	0	1	5	8	10	8	6	4 &	3	2.2	1.5	0.6	0
g/m3					_	30,	2	3	15/	_	3	2		5

This vessel is to be used as a reactor for decomposition of liquid A.

$$A \rightarrow \text{Products}$$
,

$$-rA = k CA$$
, $k=0.10 min-1$

Calculate the mean conversion of reactant A in the real reactor.

- (b) A feed comprising of 20% of 1mm particles,30 % of 2 mm particles& 50% of 4 mm passes through a rotating tubular reactor where it reacts with gas to yield a hard solid product according to the SCM with reaction step is rate controlling. The time required for complete conversion of 4 mm particles is 4 h. Determine the residence needed in the tubular reactor for; a) 95 % conversion of solids b) 75 % conversion of solids. (10)
- Q.5. (a) The result of pulse input to a vessel are shown in following fig a & b
 - i) Check the material balance with the experimental tracer curve to see whether the results are consistent or not.

(10)

- (b) Write short notes on Slurry Bed and Trickling Bed Reactor.
- Q.6. Answer the following questions. (Any four): (20)
 - a) Write short note on Tanks in Series model
 - b) Draw kinetic regime for i) slow reactions, no mass transfer resistance.
 - ii) Instantaneous reaction with low CB
 - c) Differentiate between Physical adsorption & Chemical adsorption
 - d) Write a short note on Shrinking core model and Progressive conversion model
 - (e) Explain Pulse input experiment for RTD measurement.
