(3 Hours) [Total Marks: 80]

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three questions from the remaining questions.
- (3) Assume suitable data wherever necessary.

Q 1. Answer the following questions:

(20)

- (a) Explain the different sorts of behaviours of reacting solid particles in heterogeneous fluid solid noncatalytic reactions.
- (b) Explain Pulse input experiment for RTD measurement.
- (c) What is significance of Hatta number in fluid fluid reactions?
- (d) Differentiate between Physical adsorption & Chemical adsorption.
- Q.2. (a) Derive Langmuir-Hinshelwood type of rate equation for the reaction –

$$P+O\leftrightarrow R+S$$

Where desorption of R is rate controlling step.

(10)

(b) Calculate the time required to burn to completion spherical particles of graphite (radius 12 mm, bulk density 2.4 g/cc) in a 12% oxygen stream at 900°C and 1 atm. Assume gas film resistance to be negligible. Surface reaction rate constant -

$$k'' = 25 \text{ cm/s}.$$
 (10)

- Q.3. (a) Develop conversion time relationship for Shrinking spherical particles when Chemical reaction control. (10)
 - (b) Explain in detail the contacting patterns in fluid-fluid reactions. (10)
- **Q.4.** a) The effluent concentration readings given below represent a continuous response to a pulse input into a closed vessel.

t, min	0	1	200	3	4	5	6	7	8	9	10	12	14
C Pulse g/m?	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

This vessel is to be used as a reactor for decomposition of liquid A.

$$A \rightarrow \text{Products}$$
,

$$-r_A = k C_A$$
, $k = 0.10 \text{ min}^{-1}$

Calculate the mean conversion of reactant A in the real reactor using segregation model

(10)

28744

- (b) A moving grate is continuously fed with feed consisting of 30% of 50 μm radius particles, 40% of 100 μm radius particles & 30% of 200 μm radius particles. The feed is fed in the form of thin layer & moves on the grate is cross current fashion to the flow of reacting gas. The time required for complete conversion is 5,10, & 20 minutes three sizes of particles. Find the conversion of solids on the grate for residence time of 8 minutes over the moving grate. (10)
- Q.5. (a) Gaseous A absorbs and reacts with B in liquid according to

$$A_{(g\rightarrow l)} + B_{(l)} \rightarrow R_{(l)}, \quad -r_{Al} = kC_AC_B$$

in a packed bed.

- i) Calculate the rate of reaction
- ii) Determine the location of the major resistance (gas film, liquid film, and bulk liquid) and behavior in the liquid film at a point in the reactor.

where
$$p_A$$
= 100 Pa and C_B =100 mol/m3 liquid.

 $k=10^8 \text{m}^3 \text{ liquid/mol.h}$

 $H_A = 1.0 \text{ Pa m}^3 \text{liquid/mol}$

 $k_{Ag}a = 0.1 \text{ mol/(h.m3 of reactor. Pa)}$

 $k_{Al}a = 100 \text{ m}^3 \text{liquid/(m}^3 \text{reactor.h)}$

 $a=100 \text{ m}^2/\text{m}^3 \text{ reactor}$

fl= 0.01 m³ liquid/m³ reactor

- $D_{Al} = D_{Bl} = 10^{-6} \text{ m}^2/\text{h} \text{ For } E_i < M_H/5$, consider instantaneous reaction and $E \approx E_i$ (10)
- (b) Write short notes on Packed Bed and Slurry Reactor (10)
- **Q.6.** Answer the following questions. (Any four):
 - a) Write short note on Tanks in Series model
 - b) Sketch the concentration profile for fluid fluid reaction if it is slow reaction (Assume reaction is between gaseous A and liquid B). Show the concentration profile for 1) High C_B & 2) Low C_B

(20)

- (a) Define true, apparent and bulk density for a catalyst bed.
- (b) Write short note on Shrinking core model and Progressive conversion model?
- (e) Define Residence Time Distribution (RTD) and explain significance of E (t) curve.

3⁵