Code: 31721 / Mass Transfer Operations -I
1T00535 - T.E.(Chemical Engineering)(SEM-V)(Choice Base Credit Grading 02:30 pm - 05:30 pm System) (R- 19) (C Scheme) / 31721 - Mass Transfer Operations -I QP CODE: 10057394

[3 Hours] [Total Marks: 80]

Instructions to the candidates if any:

- 1. Question No 1 is compulsory
- 2. Attempt any three questions from the remaining five questions
- 3. Assume suitable data wherever necessary
- 4. The figures to the right indicate full marks

Q. No. 1

- a. As a chemical engineer how will select the solvent to be used in gas absorption? [05]
- b. Discuss the diffusion process of various solute through polymers. [05]
- c. Discuss the concept of wet-bulb temperature. [05]
- d. A thin film of liquid is flowing past a vertical surface, inclined at an angle of 30^{0} with the vertical. The density of the liquid is $998 kg/m^3$, viscosity is $8.94 \times 10^{-2} kg/ms$. The thickness of the liquid film is 2 mm. Find the bulk average velocity with which the film is coming down. [05]

Q. No. 2

- a. What do you mean by the unicomponent diffusion of liquid A in its binary mixture with liquid B? Derive an equation for the steady state mass transfer flux in this case.
- The solute HCl is diffusing through a thin film of water 2.5 mm thick at 293 K. The concentration of HCl at point 1 at one boundary of the film is 13 wt % HCl (Density of 1060.7 kg/m^3), and at the other boundary at point 2 it is 7 wt % HCl (Density of 1030.3 kg/m³). The diffusion coefficient of HCl in water is 2.5×10^{-9} m²/s. Assume steady state and one boundary impermeable to water, calculate the flux of HCl in kmole/ m^2 s. [12]

Q. No. 3

- A gas phase is in contact with a liquid and solute A is transferring from the gas phase to the liquid phase. Draw the concentration profile for this interphase phase transfer. Also, derive the relationship between individual and overall mass transfer coefficients.
- Water is flow down a vertical wall 2.5 m long in the form of a thin film. The flow rate for the falling film is $0.045 \, kg/s$ per meter width at $25^{\circ}C$ and $1 \, std$ atm. The water film is in contact with pure carbon dioxide. The solubility of carbon dioxide in water at $25^{\circ}C$ is 0.0336 kmole/m³ of solution and water is essentially free of carbon dioxide initially. The diffusion coefficient of carbon dioxide in water at the prevailing conditions is $1.96 \times 10^{-9} \, m^2/s$. The density of the solution is $998 \, kg/m^3$ and its viscosity is $8.94 \times 10^{-4} \, kg/m$. s. Estimate the rate of absorption of carbon dioxide in

[10]

Page 1 of 2

Paper / Subject Code: 31721 / Mass Transfer Operations -I

Q. No. 4

- a. Compare tray columns with packed columns considering the following points. [08]
 - 1. Gas-side pressure drop.
 - 2. Liquid hold-up
 - 3. Liquid to gas ratio
 - 4. Foaming systems

- 5. Presence of solids
- 6. Temperature fluctuations.
- 7. Cleaning
- 8. Corrosion
- b. A plant manufacturing dry ice will burn coke in air to produce a flue gas containing 15 % CO_2 , 6 % O_2 and 79 % N_2 . The gas is blown into a counter current absorption tower at 1.2 std atm and 25°C, to be scrubbed with 30 % ethanolamine solution containing 0.058 mole fraction of CO_2 in it. The gas leaving the absorption tower is to contain 2 % of CO_2 by volume.
 - i. Determine the minimum liquid to gas ratio.
 - ii. Determine kg of entering liquid/m³ of the entering gas, for liquid to gas ratio which is 20 % more than the minimum ratio.

The equilibrium data is given in the following table. $x_{CO_2}^*$ is the mole fraction of CO_2 in the liquid solution and $P_{CO_2}^*$ is the partial pressure of CO_2 in the gas mixture in mm of Hg

$x_{{\cal C}O_2}^*$	0.058	0.060	0.062	0.064	0.066	0.068	0.070
$P_{CO_2}^*$	5.6	12.8	29.0	56.0	98.7	155	232

f121

Q. No. 5

a. Derive the equation for adiabatic saturation curves

- [80]
- b. 220 kg of a wet solid is to be dried from an initial moisture content of 26 % to a final moisture content of 3.5 %. Drying tests show that the rate of drying is constant at $3 \times 10^{-4} \ kg/m^2 s$ in the region $0.2 0.4 \frac{kg \ water}{kg \ solid}$. The drying rate falls linearly in the range of $0.01 0.2 \frac{kg \ water}{kg \ solid}$. If the equilibrium moisture content is $0.01 \frac{kg \ water}{kg \ solid}$, calculate

the time of drying. The drying surface is
$$\frac{1 m^2}{48 kg dry solid}$$
 [12]

Q. No. 6

Write short notes on the following (Any four)-

(20)

- a. Packings used in packed columns
- b. Minimum liquid to gas ratio in gas-absorption
- c. Venturi Scrubber
- d. The typical rate of drying curve
- e. Operational problems with tray columns

57394

Page 2 of 2