N. B.: (1) Question No. 1 is Compulsory.

(2) Attempt any Three questions out of the remaining Five questions.
(3) Figures to the right indicate full marks.
(4) Make suitable assumptions wherever necessary.
Q1 Answer the following sub-questions 20
(a) Derive the formula to calculate the critical radius of insulation for a cylinder 4
(b) Explain the thermal and Hydrodynamic boundary layer in convection 4
(c) Two large parallel plates of emissivity's $0.1 \& 0.05$ at an absolute temperature of $350 \mathrm{~K} \&$ 4
300 K are situated 2.5 mm apart in air. Calculate the total heat transfer per unit area. Data: $\sigma=$$5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
(d) Write about heat transfer in agitated vessels4
(e) Differentiate between Forward and backward feed of evaporators 4
Q2
(a) A Cylindrical tube of length "L" with inside radius r_{1} and outside radius r_{2} is lagged by insulating material with r_{3} as the outer radius of insulation. Derive an equation for the rate of heat flow through a cylindrical tube.
(b) A furnace is constructed with 250 mm of firebrick, 120 mm of insulating brick, and 225 mm of building brick. The inside temperature is 1225 K and the outside temperature 337 K . If the thermal conductivities are $1.3,0.25$, and $0.7 \mathrm{~W} / \mathrm{m} \mathrm{K}$, find the heat loss per unit area and the temperature at the junction of the firebrick and insulating brick.
(a) Show by dimensional analysis, the Nusselt number is a function of the Reynolds number and Prandtl number for the cases of Forced convection
(b) Air at 308 K flows across a 50 mm diameter cylinder at a velocity of $50 \mathrm{~m} / \mathrm{s}$. The cylinder cylinder.
Data: Physical properties of air at the film temperature of 665 K are:
$\mu=2.14 \times 10^{-5} \mathrm{Kg} / \mathrm{ms}$
$\rho=0.996 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{k}=0.0312 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
$\mathrm{Npr}=0.695$
The average heat transfer coefficient may be calculated using the following correlation $\mathrm{N}_{\mathrm{Nu}}=0.0266(\mathrm{NRe})^{0.805}(\mathrm{NPr})^{1 / 3}$
(b) Two long planes A and B are maintained at 600 K and 300 K and their surface emissivity are 0.8 and 0.5 respectively. Two thin radiation shields C and D having emissivity's 0.5 and 0.4 are introduced between the given planes. The given planes are in order A, C, D and B. Assuming all the planes to be infinitely long, find the rate of heat exchange per unit area and steady-state temperatures attained by planes C and D .
(a) For Parallel flow heat exchanger Show that

$$
\varepsilon=\frac{e^{-N T U(1+C)}}{1+C}
$$

(b) A heat exchanger has heat transfer coefficient $1200 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ on a side whose surface area is $100 \mathrm{~m}^{2}$ Calculate the effectiveness and outer temperature of hot and cold fluids for co-current flow if hot fluid inlet temperature is 550 K , cold fluid inlet temperature is 310 K , mass flow rate of hot fluid is $5.5 \mathrm{~kg} / \mathrm{s}$, the mass flow rate of cold fluid is $6.2 \mathrm{~kg} / \mathrm{s}$, the specific heat of hot fluid is $3125 \mathrm{~J} / \mathrm{kg}$, the specific heat of cold fluid is $4.184 \mathrm{KJ} / \mathrm{kg}$

An aluminum rod of 12 mm in diameter and 100 mm long protrudes from a wall maintained
(a) at 550 K into the environment maintained at 288 K . Estimate heat loss by rod using that rod end is insulated. Also find the fin, efficiency and temperature at end of fin. Data: k aluminum $=200 \mathrm{~W} / \mathrm{mK}$, Heat Transfer Coefficient is $20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
(b) Explain the various types of feed arrangements in detail for the evaporator with a diagram

