Paper / Subject Code: 40323 / Numerical Method in Chemical Engineering

1T00534 - S.E.(Chemical Engineering)(SEM-IV)(Choice Base Credit Grading System)

(R- 2020-21) (C Scheme) / 40323 - Numerical Method in Chemical Engineering QP CODE: 10039887 DATE: 14/12/2023

Time: 3Hrs Marks: 80

N.B.: 1) Question No.1 is compulsory

- 2) Answer any three questions from remaining questions
- 3) Assume data if necessary and specify assumptions clearly
- Q.1 a) Explain Truncation error in short.

[5 marks]

b) Fit a straight line using the following Time Vs Conversion data.

[5 marks

T	5	4	3	2	1
CA	1	2	3	4	5

- c) Solve the boundary value problem $u_t = u_{xx}$ under the conditions u(0,t) = u(1,t) = 0 and $[5 \text{ marks}] \sin \pi x$, $0 \le x \le 1$ using Bender Schmidt Method for two time steps. (Take h=0.2)
- d) Show progress of bisection method using graphical representation.

[5 marks]

- Q.2 a) Using A Solve the boundary value problem $u_t = u_{xx}$ under the conditions u(0,t) = u(1,t) [10 marks] = 0 and $\sin \pi x$, $0 \le x \le 1$ using Bender Schmidt Method for two time steps. (Take h=0.2)
 - b) From the following data of variation of fluid temperature with time, obtain dy/dx for [10 marks] x = 1.4 by using newton's forward formula.

t Sec	1.4	1.6	1.8	2.0	2.2
T °C	4.0552	4.9530	6.0496	7.3891	9.0250

Q.3 a) The change in velocity of a moving particle is given by the following equation [10 marks] $\frac{dv}{dt} = 0.025v^2 - 5t$

Where v is in m/s and t is in seconds. If at t=0, v=5 m/s. by using Euler's method find v (1.5). (Take step size as 0.25).

Solve $\frac{\partial p}{\partial t} = \frac{\partial^2 p}{\partial y^2}$ subject to the condition p(y,0)=0, p(0,t)=0, p(1,t)=100t with k=1/4, [10 marks] h=1/2 for a time step using crank Nicholson method

30887

Page 1 of 2

Q.4 The temperature of a metal strip was measured at various time intervals during heating [10 marks] and the values are given in the table. If the relationship between temperature T and time t is of the form

$$T = be^{t/4} + a$$

Time t (min)	Temperature T (⁰ C)
1	70
2	83
3	100
4	124

[10 marks]

Find the temperature at t = 6 minute.

Solve the following by Gauss-Seidel method b)

$$10x + y + z = 12$$

$$2x1 + 10y + z = 13$$

$$2x + 2y + 10z = 14$$

 $\int_0^6 \frac{dx}{1+x^2}$ By using Q.5 Evaluate

[10 marks]

- 1. Trapezoidal rule Simpson's (1/3)rd rule.
- Solve by using LU decomposition method

[10 marks]

$$2x+3y-z=5$$

 $3x+2y+z=10$

$$x-5y+3z=0$$

Consider a reaction A B carried out in a batch reactor governed by [10 marks]

$$\frac{dCa}{dt} = -kCa$$

 $\frac{dCa}{dt} = -kCa$ The initial conditions are: at t=0, Ca= 1 mol/m³. The rate constant (k) is 1 s⁻¹. Using Runge-Kutta Second order method, determine the concentration of A at 2 s. (take step size as 1).

[10 Marks]

Find the root of $f(x) = x^3 - 5x - 7 = 0$, using Secant method correct to three decimal places of decimal point

Page 2 of 2