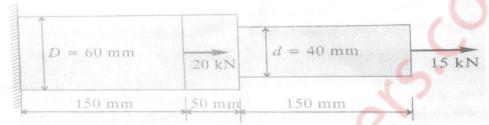
T.E (Production Engineering)(SEM-V)(Choice Base) / 32907 / NOV -2019 /29 .11.2019

(3 Hours)

Total Marks: 80

N.B: 1. Question no. 1 is compulsory


- 2. Attempt any THREE questions out remaining FIVE questions.
 - 3. All questions carry equal marks.
 - 4. Assume suitable data if necessary.

0.1

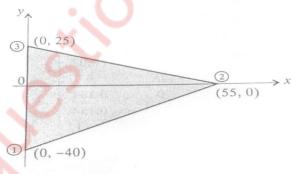
a. Solve for Complete Analysis. E = 210 GPa for bar material.

(10)

b. Given a differential equation:

(10)

(10)


$$\frac{-d^2y}{dx^2} - 9y + x^2 = 0; 0 < x < 1; y(0) = 0; y'(1) = 1$$

Find of y (0.5) & y (0.7) by using Galerkin method& compare it with exact solution.

Q.2

a. Evaluate the stiffness matrix for the CST element shown below. Coordinates in mm. Assume plain stress conditions. $E = 200 \text{ GPa } \gamma = 0.3$.

Thickness = 1 cm.

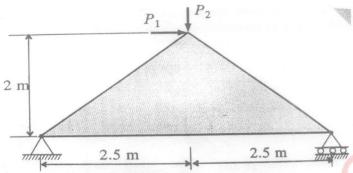
Nodal displacements are given as $U_1 = 2$ mm, $U_2 = 0.4$ mm, $U_3 = 3$ mm, $V_1 = 1$ mm, $V_2 = 0$ mm & $V_3 = 1$ mm. Find the stiffness matrix equation.

What are the rules for discretization? b. I.

(05)

Write short note on sources of errors in FEM. II.

(05)

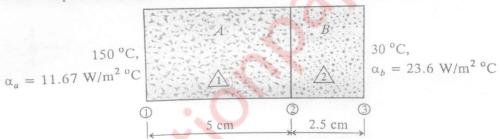

76661

Page 1 of 3

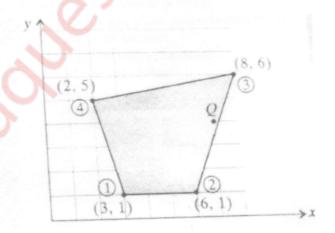
Paper / Subject Code: 32907 / Elective - I Finite Element Analysis (DLOC)

Q.3

a. Analyze the truss completely i.e. for displacements, reactions, stresses and strains.
Area of each member = 1000 mm². E for each member = 210 GPa. P₁= 10 KN and P₂ = 20 KN.


b. What do you mean by consistent and lumped mass matrix?

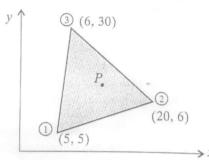
(05)


(10)

Q.4

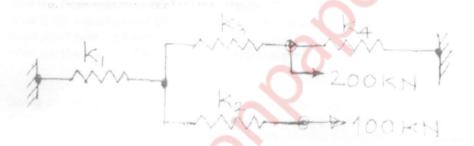
a. Consider a plain composite wall which is made of two materials of thermal conductivity k_a = 204 W/m°C and k_b = 46 W/m°C and thickness h_a = 5 cm and h_b = 2.5 cm. Materials A adjoins a hot fluid at 150°C for which heat transfer coefficient α_a = 11.67 W/m²°C and the material B is in contact with a cold fluid at 30°C and heat transfer coefficient α_b = 23.6 W/m²°C. Calculate rate of heat transfer through the wall and the temperature at the interface. The wall is 2 m high and 2.5 m wide.

b. For the isoparametric quadrilateral element shown in fig, determine the local coordinates (ϵ , η) of the point Q which has Cartesian coordinates (6.5, 3.8).



76661

Page 2 of 3


Q.5

a. For the triangular element defined by nodes 1 (5,5), 2 (20,6) and 3 (6,30), obtain the strain displacement relation matrix B and determine the strains ε_x , ε_y & γ_{xy} . The displacements at the nodes are: $U_1 = 0.4$ mm, $U_2 = 0.1$ mm, $U_3 = 0.5$ mm, $V_1 = -0.2$ mm, $V_2 = -0.5$ mm & $V_3 = -0.3$ mm. Assume the units of displacements and the coordinates are the same. Also determine the displacement at point P (8,12).

b. Figure show cluster of springs. One end of the assembly is fixed and force is applied at the end. Using the finite element method, determine: The reaction forces at supports. (10)

When K₁=50N/mm, K₂=150N/mm, K₃=75N/mm, K₄=120N/mm.

Q.6 Attempt any Five.

(20)

- a. What are the advantage and disadvantage of FEM?
- b. How weight functions tell us about error in FEM?
- c. What are plane stress condition and plane strain conditions? When are they opted?
- d. Write short note on Isoparametric element.
- e. What are the properties of global stiffness matrix?
- f. Explain the significance of Jacobian matrix.