T.E. (SEM.-VI) (CBSGS) (MECHANICAL ENGG.) FINITE ELEMENT ANALYSIS

19th Dec. 2015 3.00 pm to 6.00 pm

QP Code: 6470

Revise d Course

(3 Hours)

[Total Marks: 80

- N.B 1. Question No. 1 is compulsory
 - 2. Attempt any four questions from remaining FIVE.
 - 3. Assume suitable data if required.
 - 4. Figures to the right indicate full marks.
- Attempt any four of following;
 - a. Explain applications of FEA in various fields.
 - b. State different types of Boundary conditions.
 - c. Explain with sketches: types of elements.
 - d. Explain Shape function graphically for one dimensional Linear and quadratic element.
 - e. Explain Gauss Elimination Method using an example.

5

12

5

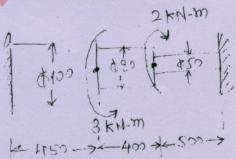
2. a. Solve following differential equation

$$\frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} - 6y = 0; \qquad 0 \le x \le 1$$

BCs: y(0) = 0 and y'(1) = 0.1; Find y(0.2) using variational method and Compare with exact solution

b. Evaluate following integral $I = \int_{1}^{1} (3^{x} - x) dx$

8

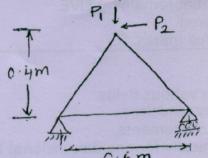

Using (a) Newton Cotes Method using 3 sampling points.

(b) Three points Gauss Quadrature

r	Wı	W ₂	W ₃	W ₄
1	1			
2	1/2	1/2		
3	1/6	4/6	1/6	
4	1/8	3/8	3/8	1/8

r	ξ	W _i	
1	0.00	2.00	
2	0.5773	1.00	
3	0.00	0.8889	
	0.7746	0.5556	

- 3. a. Find the natural frequency of axial Vibrations of a bar of uniform cross section 10 of 20 mm² and length 1 m. Take, $E=2\times10^5$ N/mm² and $\rho=8000$ kg/m³. Consider two linear elements.
 - b. Using Direct Stiffness method, determine the nodal displacements of stepped 10 bar shown in figure. Take, G = 100 GPa.


[TURN OVER

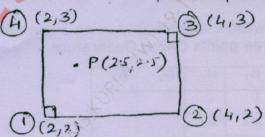
QP Code: 6470

4. a. Explain Lumped and consistent mass matrix.

6

b. Analysis the plane truss for nodal displacement, element stresses and srtains. 14 Take, $P_1 = 5$ KN, $P_2 = 2$ KN, E = 180 Gpa, A = 6 cm² for all elements.

5. a. Solve following differential equation $\frac{d^2y}{dx^2} - 10x^2 = 5$; $0 \le x \le 1$


12

BCs: y(0) = y(1) = 0. Using Rayleigh-Ritz method, mapped over entire domain using one parameter method

b. Find the shape function for two dimensional eight noded element.

8

6. a. Coordinates of nodes of a quadrilateral element are as shown in the figure below. Temperature distribution at each node is computed as $T_1 = 100^{\circ}$ C, $T_2 = 60^{\circ}$ C, $T_3 = 50^{\circ}$ C and $T_4 = 90^{\circ}$ C. compute temperature at point P (2.5, 2.5).

- b. What are the h and p versions of finite element method?
- Convergence requirement.

7

7