Paper / Subject Code: 32501 / Signals and Systems

T.E. SEM V / INST / CHOICE BASE / NOV 2019 / 15.11.2019

[Time: Three Hours]

[Marks:80]

Instructions:

- 1. Question.No.1 is compulsory.
- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data wherever necessary.

1 Attempt the following:

- a. Determine linear convolution for $x(n) = \{-3, 1, -5, 1, -7\}$ & $h(n) = \{-10, -2, -3, -5\}$
- b. Compute Laplace transform and

$$x(t) = 4e^{-3t}u(-2t) + e^{-3t}u(t-1)$$

c. Determine the convolution using z transform for

$$x(n) = (-\frac{2}{3})^{2n} u(2n)$$
 and $h(n) = (-\frac{1}{2})^n u(n)$

- d. Determine Fourier series coefficients of $x(n) = \{5, 5\}$
- 2 a. Prove the following properties of z-transform:

10

- 1. Time-reverse property
- 2. Differentiation property
- 3. Correlation property
- Justify whether following systems are static/dynamic, casual /non casual,
 stable/unstable, Time invariant/Time variant, Linear/ non Linear:

1.
$$y(t) = y(t-2) + x^2(2t)$$

2.
$$y(n) = x(2n) + x(2n-1) + x(2n-2)$$

- 3 a. Justify whether following signals are energy signals or power signals.
- 5

- 1) $x(t) = A\cos(20\pi t)$
- 2) $x(n) = (-2)^n u(n)$
- b. Sketch even and odd parts of the signal shown below:

5

$$x(t) = 2.5 \cos(2\pi t) + 5 \sin(4\pi t)$$

- c. Find Fourier transform sketch magnitude and phase response for signal
- 10

$$h(t) = e^{-2t/3}, t \ge 0$$

 a. Sketch the output signals by performing following operations on signal shown below:

$$x\left(t\right) = \delta(-t-1) + \delta(t+2) \qquad 1) \ x\left(\frac{3t}{2}-1\right) \quad 2) \ x\left(\frac{t}{2}\right) \quad 3) \ x(-2-t)$$

Determine impulse response and unit-step response of system with transfer function:

$$H(z) = \frac{2 - z^{-1} + 2z^{-2}}{1 - 3.5z^{-1} + 2z^{-2}}$$

- 5 a. Determine Fourier series coefficients for the rectangular pulse signal.
 - b. Find impulse response h(t) $H(s) = \frac{s-0.5}{(s-1)(s-2)} \text{ for all possible ROCs.}$
 - c. Find 1) Transfer function 2) Impulse Response for the system described by differential equation

$$1.5\frac{d^2y(t)}{dt^2} - 3.5\frac{dy(t)}{dt} + 2y(t) = 2.5\frac{dx(t)}{dt} - 2x(t)$$

6 a. Determine circular convolution of signals shown below:

$$h_1(n) = \{1, 2, 3, 4\}, \quad h_2(n) = \{4, 3, 2, 1\}$$

- b. State any 2 properties of Discrete-time Fourier transform (DTFT).
- c. Find transfer function of the system described by the difference equation: 6

$$y(n) = -3.5y(n-1) + 6.5y(n-2) + 5.5x(n) - 1.25x(n-2)$$

Also, sketch pole-zero plot