T.E (EXTC) SEM VI CBGS DETSP 26/11/15-

QP Code : 6320

(3 Hours)

[Total Marks :80

- **N.B.** : (1) Question no. 1 is compulsory.
 - (2) Solve any three questions from remaining five questions.
 - (3) In all four questions to be attempted.
 - (4) Figures to the right indicate full marks.
- 20×100007 1. (a) The first five points of eight point DFT of real valued signal are {0.25, 0.125 - j0.3018, 0, 0.125 - j0.0150, 0}. Determine the remaining three
 - Sketch the frequency response and identify the following filters based on their passband (b)SARDAR PATELINSTIT

(i)
$$h(n) = \left\{1, -\frac{1}{2}\right\}$$

(ii)
$$H(z) = \frac{z^{-1} - a}{1 - az^{-1}}$$

What is multirate DSP? State its applications (c)

(d) An analog filter has transfer function

$$H(s) = \frac{S+0.1}{(S+0.1)^2+16}$$

Determine transfer function of digital filter using bilinear transformation.

The digital filter should have a specification of $\omega_1 = \frac{\pi}{2}$

Compute DFT of sequence $x(n) = \{1, 2, 2, 2, 1, 0, 0, 0\}$ using DIT-FFT 10 2 (a) algorithm.

Explain the effects of seefficients quantization in FIR filters. (b) 10

- Implement a two stage decimation for the following specification: 3. (a) 10 Sampling rate of the input signal = 20,000Hz, Decimating factor M = 100, Passband = 0 to 40Hz, Passband ripple = 0.01, Transition band = 40 to 50Hz, Stop band ripple = 0.002
 - If $x(n) = \{1 + 2j, 3 + 4j, 5 + 6j, 7 + 8j\}$. Find DFT X(k) using DIF- 10 (i) FFT algorithm.

[TURN OVER

MD-Con.8410-15.

OUCH AT

10

- Explain upsampling process in detail and derive for input-output relationship 10 4 (a) in time domain and frequency domain.
 - Obtain cascade and parallel realization structures for the system described 10 (b) by y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7 x(n) - 0.252 x(n-1)
- 5. (a)

Design a FIR digital filter using window r	nethod for following specifications 10
$H(e^{jw}) = e^{-j3w} 0 \le \omega \le \frac{3\pi}{4}$	- E
= 0 otherwise	12
Use Hamming window of length 7	at a di Sultania Sumpoification 10

Design a digital low pass IIR Butterworth filter for the following specification 10 (b) A Providence

	-		4 175
	Passband ripple	1	≤l dB
	Passband edge	:	4 KHz
	Stopband attenuation	;	40 dB
	Stop edge	÷	8 KHz
	Sampling Rate	;	24 KHz
Use bil	inear transformation		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-			.06.
Write	a short note on:	بې	\mathcal{V}

Write a short note on: 6. (a)

- Dual tone multi frequency signal detection (i)
- Different methods for digital signal synthesis (ii)
- Determine the zeros of the following FIR systems and indicate whether 10 (b) the system is minimum phase, maximum phase or mixed phase.
 - $H_{1}(z) = 6 + z^{-1} + 6z^{-2}$ (i)

(ii)
$$H_2(z) = 1 - 6z^{-2}$$

(iii)
$$H_3(z) = 1 - \frac{5}{2}z^{-1} - \frac{3}{2}z^{-2}$$

(iv)
$$H_4(z) = 1 - \frac{5}{2} z^{-1} - \frac{2}{3} z^{-2}$$

Comment on stability of minimum and maximum phase system

SARDAR PATHINK OF MD-Con.8410-15.