RF Modeling & ountennas

QP Code: 14910

N. B	3. :	(1)	Question	No. 1	is	compulsory.
------	------	-----	----------	-------	----	-------------

- Attempt any 3 (three) out of the remaining 5 (five) questions.
- (3) Assume suitable data wherever necessary. Justify the assumption.

		(4) Draw suitable diagrams wherever necessary.	
	(a)	Compare striplines and Microstrip lines.	5
	(b)	Explain the significance of Retarded magnetic vector potential and Retarded electric Scalar potential.	5
	(c)	With suitable example explain pattern Multiplication for Antenna Arrays.	5
	(d)	Explain how Richard's Transformation and unit elements are useful in RF filter designing.	5
2.	(a)	Explain with equivalent circuits the RF behavior of Resistor, Inductor and Capacitor.	16
	(b)	Design a maximally flat LPF with a cut-off frequency of 2GHz; generator and Load Impedance of 50 Ω ; and with 15 dB Insertion Loss at 3 GHz with discrete LC components.	10
}.	(a)	Using Image Parameter method design a Low-pass composite filter with a cut- off frequency 2 MHz and Impedance of 75 \Omega. Place the Infinite attenuation pole at 2.05 MHz.	10
	(b)	Derive Array factor of N-element liner array, where all elements are equally fed and spaced. Also find the expression for the position of principle maxima, nulls and secondary maxima.	10
١.	(a)	Design a broadside Dolph TChebyshev array of 6 elements with spacing 'd' between the elements and with a major to minor lobe ratio of 26 dB. Calculate the excitation coefficients.	10
	(b)	Explain the working principle of Yagi-Uda Antenna and draw its radiation pattern. Mention its applications.	10

(a) Explain the structure of Microstrip Antenna. Discuss its feed mechanisms and

QP Code: 14910

- (b) Explain the following terms related to Basic Antenna concepts with relevant equations:—
 - (a) Radiation Resistance
 - (b) Effective aperture
 - (c) Beam width
 - (d) Directivity
 - (e) Antenna efficiency.
- 6. Write short notes on the following:-
 - (a) Friss Transmission formula
 - (b) Ground effect in Antenna
 - (c) Near field and far field Radiation related to Antenna
 - (d) Log Periodic Antenna.

20