	Paper / Subject Code: 37205 / DIGITAL SIGNAL PROCESSING AND PROCESSORS	
T	E(ETRX) - Sem VI - CBSGS - 03/06/2019	
-	Time : 3 Hrs Marks : 80	
	N.B.	
	1) Question number ONE is compulsory.	
	2) Attempt any THREE questions from remaining questions.	
	B) All questions carry equal marks.	
		S S
	Q1] Answer any four questions	
1	a) Differentiate between billiear 21 and impulse invariant method	5
	 b) Compute 4-point DFT of a causal four sample sequence given by, X(n)= { j, 0, j, 1 } 	5
	c) Explain the effect of quantization in computation of DFT	5
	 d) Verify Parseval's theorem for sequence x (n)=(¹/₂)ⁿ u(n). assume N=4. e) Differentiate between DSP processor and microprocessor 	5
		10
	Q2] a) Find DFF of the following sequence using DFF FFF algorithm.	10
	$x(n) = \{ -1 - 1 \ 2 \ 0 \ 2 \ 0 \ 2 \ 0 \}$ and sketch the magnitude and phase response.	
	b) Let x be a finite sequence with DFT X = DFT[x] = [0, 1+j, 1, 1-j]	
	Using the properties of the DFT determine the DFT's of the following: i) $y[n] = e^{j(\pi/2)n} x(n)$	
	ii) $y[n] = \cos(\pi/2)n x(n)$	
f	iii) $y[n] = x[(n-1)_4]$ iv) $y[n] = [0, 0, 1, 0] \circledast x[n]$ with \circledast denoting circular convolution	10
	Q3] a)Design a Butterworth digital IIR low pass filter using Bilinear transformation by taking	
	T=0.5 second, to satisfy the following specifications.	
	$0.707 \le H(e^{jw} \le 1.0 : 0 \le w \le 0.45\pi$	
Cont and	$ H(e^{jw} \le 0.2 : 0.65\pi \le w \le \pi$	10
	b) Given that,	
	$H(s) = s^{3}/((s+1)(s^{2}+s+1)).$	
	Find H (Z) using Bilinear Transformation method, for T=1	10
305	Q4] a) Explain special features of TMS 320 c67XX DSP processor.	10
A CARLER OF	b) Consider the LTI system governed by the equation, $y(n)+0.8301y(n-1)+0.7348y(n-2)=2$	x(n-2)
	Discuss the effect of coefficient quantization on pole locations, when the coefficients are quantized by (i) 3 bits by truncation and (ii) 4 bits by truncation	10

68205

Page 1 of 2

- Q5] a) Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of window sequence and with cutoff frequency wc= 0.2π rad/sample.
 - b) Explain with neat diagram application of DSP processor in biomedical signal processing

20

Q6] Write short notes on (any two)

- a) Addressing modes of DSP processor? Where they are used.
- b) Frequency transformation in digital domain
- c) DMA controller, Memory organization of TMS320C6713