T.E. sem I (CB4s) (ETRX) 18/11/10-EME

QP Code : 5564

(3 Hours)

[Total Marks : 80

- N.B.: (1) Question no 1 is compulsory
 - (2) Solve any three from Question no 2 to Question no 6
 - (3) Assume suitable data if required .
 - (4) Right figures indicate the marks
- 1. Attempt any four:

	(a)	State and explain coulomb's law	5
	(b)	derive poisson's and laplace equation.	5
	(c)	What is intrinsic impedance of free space?	5
	(d)	Define directive gain and directivity with respective antenna. An antenna has a directivity of 20 and a radiation efficiency of 90%.compute the gain in dBs.	5
	(e)	Find out the divergence and curl of the following function	5
		$\overline{A} = 2xy\overline{a}\overline{x} + (x^2z)\overline{a}\overline{y} + z^3\overline{a}\overline{z}$	
2	(a) Given the potentials V= $2x^2y-5xz$ and a point P(-4,3,6) find V,E,D and e, at point P		10
	(b) Der media	ive boundary conditions for electric fields at the boundary of two dielectric	10
-	(1) D-1	in Monoral integral and point form equations for time varying fields	10

10 3. (a) Derive Maxwells integral and point form equations for time varying fields 10 (b) Prove $\nabla . \overline{D} = e_v$

4. (a) In a media characterized by $\sigma = 0$, $\mu = \mu_0$ and $\varepsilon = \varepsilon_0$ 10 $\overline{E} = 20\sin(10^8 t - \beta z)\overline{ay} v/m$, find β and \overline{H} .

- 10 (b) Derive the expression for the reflection and transmission coefficients in case of reflection from perfect dielectric at oblique incidence.
- 10 5. (a) Explain in detail MOM method also state advantage and drawback of it.
 - 10 (b) State and derive the poynting theorem and describe the significance of each term
- 6. Attempt any two :

MD-Con. 6896-15.

- 10 (a) What is line of sight propagation? Obtain the expression for range of line of sight for space wave propagation in terms of antenna's transmitting and receiving heights.
- 10 (b) Explain ground wave, space wave propagations. 10
- (c) Derive an expression for radiation resistance of an small loop antenna. Explain Its significance