Elegrical

C.S. I

Q.P. Code: 584801

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three from the remaining questions.
- (3) Figures to the right indicate full marks.
- (4) Use graph paper and semi log paper wherever necessary.
- 1. Attempt any four

20

- (a) Define 'Stability', 'Unstability' and 'Marginal Stability' with respect to pole position.
- (b) Explain the first element zero and complete row zero condition in routh stability criteria.
- (c) Draw the block diagram of closed loop linear time invarient system and define its components.
- (d) Explain Nyquist criteria for stability.
- (e) Explain the advantages of state space approach over conventional approaches.
- 2. (A) Reduce the block diagram to a single block $T(S) = \frac{C(S)}{R(S)}$

10

(B) Use Masson's gain formula to obtain the transfer function for the given system 10 represented in the block diagram.

10

10

C. S. I

(A) Represent the following sytem is state space in phase variable form and draw its state model.

$$\frac{C(S)}{R(S)} = \frac{10(S+2)(S+3)}{(S+1)(S+4)(S+5)}$$

(B) Diagonalize the following system represented in state space model.

$$\dot{x} = \begin{bmatrix} -5 & -5 & 4 \\ 2 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix} r$$

$$y = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix} x$$

4. (A) Given the unity feedback system that has the forward transfer function

$$G(S) = \frac{K(S+2)}{(S^2 + 4S + 13)}$$
 sketch the complete root locus.

(B) Using the routh table tell how many poles of the following function are in the 10 RHS, LHS & on the imaginary axis.

CLTF = T(S) =
$$\frac{S+8}{S^5 - S^4 + 5S^2 + 3S - 2}$$

3

5. (a) The system of the figure is to have the following specifications: $K_v = 10$ and 10 $\xi = 0.5$. Find the values of $K_1 \& K_2$ required for the specification of the system

Draw the bode log magnitude & phase angle plots for the system given by

$$G(S)H(S) = \frac{(S+20)}{(S+1)(S+7)(S+50)}$$

Find phase margin, gain margin, phase & gain crossover frequency. Also comment on stability.

6. (a) Write notes on any two

20

10

- (a) Time response of second order system.
- (b) Transfer function of DC servomotor.
- (c) Relation between time response and frequency response performance criteria.