T.E. Electrical VI CBGS C.S.-I

Q.P. Code: 6384

(3 Hours)

[Total Marks: 80

NOTE:

- 1. Question No. 1 is compulsory.
- 2. Attempt any Three questions from remaining.
- 3. Use graph paper and semi log paper where necessary.
- 4. Assume suitable data wherever necessary.
- Q1 Solve any Four
 - a. Explain working of AC servo motor.
 - b. Explain transient response specifications.
 - c. Compare translation system with rotational system.
 - d. Derive the expression to obtain transfer function from state space.
 - e. Explain how Type of system affects the steady state error of the system.
 - f. With the help of polar plot explain the effect of adding more poles.
- (5)
- (2)
- (5)
- (5) (5)
- Q2 a. Determine the transfer function, C_1/R_1 , C_2/R_2 , C_1/R_2 and C_2/R_1 for the circuit given in Figure 1. (10)

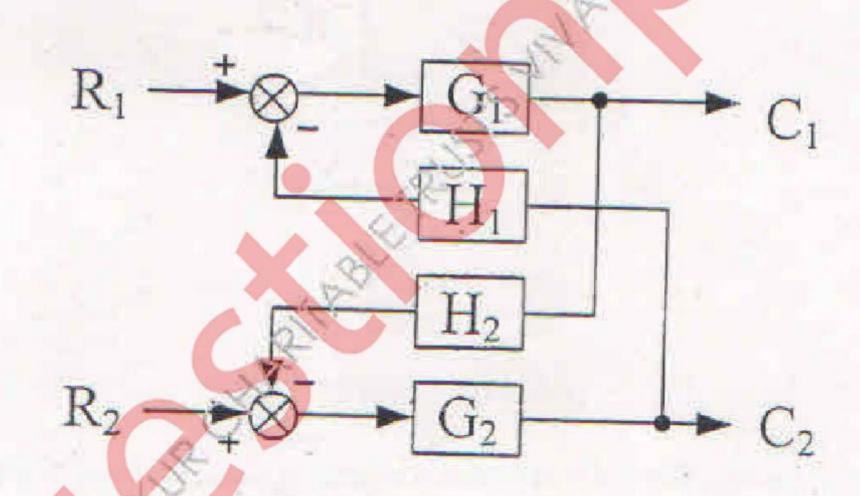


Figure 1 (Q.2 a)

T.E. Electrical VI CBGS C.S-I

Q.P. Code: 6384

(10)

Q2 b. Find the equivalent transfer function, T(s) = C(s)/R(s), for the system shown in Figure 2 using masson's gain formula. (10)

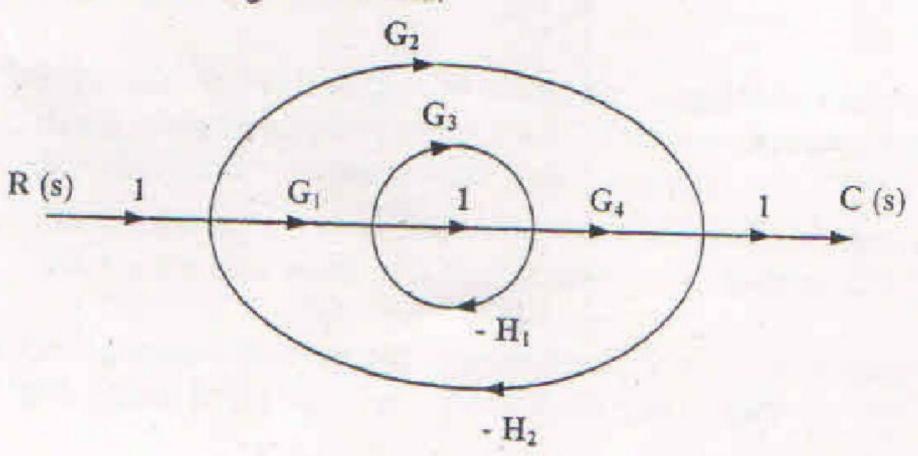


Figure 2 (Q.2 b)

Q3 a. Given the mechanical system in Figure 3, find the transfer function $X_2(s)/X_1(s)$.

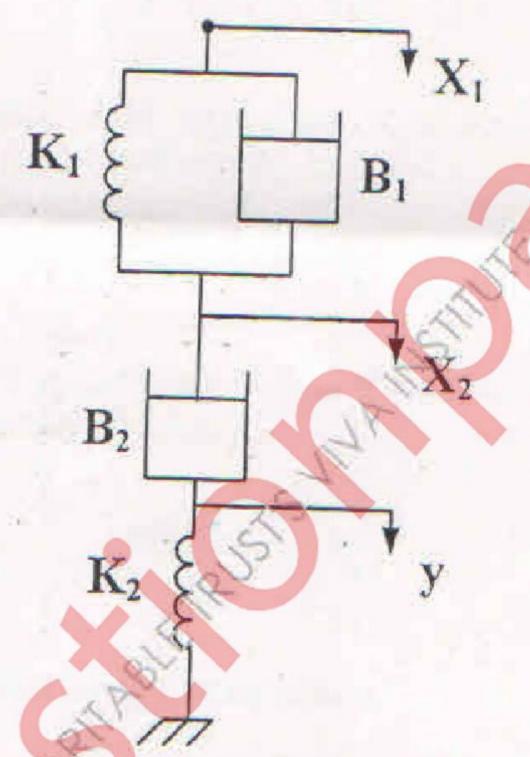


Figure 3 (Q. 3 a)

b. Measurement conducted on a servomechanism show the system response to be (10)

$$c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$$

When subjected to a unit step input.

- (i) Obtain the expression for the closed loop transfer function.
- (ii) Determine the undamped natural frequency, damping ration of the system, percentage peak overshoot and settling time.

.

[TURN OVER

8.12.15 Q.P. Code: 6384

A unity feedback (negative) system has open loop transfer function

(10)

$$G(s) = \frac{K}{s(s+2)}$$

- Calculate the value of gain K so that the closed loop system has (i) steady - state unit ramp error of 0.1. What are corresponding damping factor and percentage peak overshoot.
- (ii) The system is now modified to include a forward path zero at s = -6. What is the new value of K for the steady - state error as in part (i).
- For the following system represented in state space, find out how many poles are in the left half-plane, in the right half-plane and on jw - axes.

$$\dot{x} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 7 & 1 \\ -3 & 4 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x$$

Sketch the root locus and find the range of gain K for system stability for a unity Q5 (10)feedback system with the forward transfer function.

$$G(s) = \frac{K}{(S+4)^3}$$

For given unity feedback system draw Bode plot and determine G.M., P.M., (10)Wgc and Wpc. Comment on stability.

$$G(s) = \frac{e^{-0.2s}}{s(s+1)}$$

Q6 a. Obtain the time response of the following system.

(10)

$$\dot{x} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

where u(t) is a unit step occurring at t = 0 and $X^{T}(0) = [1 \ 0]$.

Discuss the stability of system using Nyquist plot for

(10)

$$G(s)H(s) = \frac{20}{s(s+4)(s-2)}$$