Paper / Subject Code: 31702 / Mass Transfer Operations - I (MTO-I)

19-Nov-2019 1T00525 - T.E.(Chemical Engineering)(SEM-V)(Choice Base) / 31702 - Mass Transfer Operations - I (MTO-I)77192

[Time: 3 Hours] [Total Marks: 80]

Instructions to the candidates if any: -

- 1. Question No 1 is compulsory
- 2. Attempt any three questions from the remaining five questions
- 3. Assume suitable data wherever necessary
- 4. Figures to the right indicates full marks

Q. No. 1

- a. Derive relation between K type and F type mass transfer coefficients for equimolal counter diffusion of gas A and gas B, when the driving force is partial pressure difference [05]
- b. A thin film of liquid is flowing past a vertical surface, inclined at an angle of 38^{0} with the vertical. The density of the liquid is $994 \, kg/m^{3}$, viscosity is $8.94 \times 10^{-2} \, kg/ms$. The thickness of the liquid film is $2.25 \, mm$. Find the bulk average velocity with which the film is coming down. [05]
- c. In a mixture of benzene vapor and nitrogen gas at a total pressure of 850 mm of Hg and a temperature of $60^{\circ}C$, the partial pressure of benzene is 120 mm of Hg. Calculate mass and molal absolute humidity. [05]
- d. Discuss the requirements for a solvent that can be used in gas absorption [05]

Q. No. 2

- a. Derive the equation for calculating steady state molar flux for equimolar counter diffusion of gas A and gas B. [08]
- b. Ammonia is diffusing through a stagnant gas mixture consisting of two third nitrogen and one third of hydrogen by volume. The total pressure is 2 *atm* absolute and the temperature is 53°C. Calculate the rate of diffusion of ammonia through a film of gas, 0.6 *mm* thick when the concentration change across the film is 12 % to 6 % by volume.

The given data is: -

Diffusivity of ammonia in nitrogen is $0.196 \text{ cm}^2/\text{s}$.

Diffusivity of ammonia in hydrogen is $0.63 \text{ cm}^2/\text{s}$.

[08]

c. Write a short note on Height Equivalent to a Theoretical Plate

[04]

Q. No. 3

- a. Derive an equation between overall and individual mass transfer coefficients in interphase mass transfer between a gas and a liquid. [10]
- b. The air pressure in a tyre reduces from 2 bar to 1.98 bar in four days. The volume of the air in the tube is $0.025 m^3$, the surface area is $0.5 m^2$ and the wall thickness is 0.01 m. The solubility of air in the rubber is $0.07m^3/m^3$. Estimate the diffusivity of air in the rubber at $30^0 C$.

77192 Page 1 of 2

Q. No. 4

a. Derive the equation for adiabatic saturation curves

[08]

b. $6000 \, kg/hr$ of a $SO_2 - air$ mixture containing 4 % by volume of SO_2 is to be scrubbed with $150000 \, kg/hr$ of water in a packed tower. The exit concentration of SO_2 is reduced to 0.18 %. The tower operates at 1 atm. The equilibrium relationship is Y = 29X. If the packed height of tower is $400 \, cm$, estimate the height of transfer unit. X and Y are the mole ratios in liquid and gas phase respectively.

Q. No. 5

a. Discuss the comparison between packed and tray towers.

[08]

b. A batch of solids for which the following table of data applies is to be dried from 28 % to 8 % moisture content under conditions identical to those for which the data was collected. The initial weight of the wet solid is $350 \, kg$ and the drying surface is $1m^2/9 \, kg \, dry \, weight$. Determine the time of drying. [12]

X	0.35	0.25	0.20	0.18	0.16	0.14	0.12	0.10	0.09	0.08	0.064
N	0.35	0.35	0.35	0.3	0.26	0.239	0.20	0.18	0.15	0.097	0.07

Q. No. 6 [20]

Write a short note on the following [Any four]

- a. Diffusion through crystalline solids.
- b. Problems associated with operation of a packed column.
- c. Classification of cooling towers.
- d. Two film theory
- e. Diffusion coefficients for liquids.

77192 Page 2 of 2