T.E. -II- Sem. Biotechonology

OILINI
Thermodynamics (Figicchemical TEIICBG3/BT/TBE

Engineening
(3 Hours)

[Total Marks: 80

Note:

1. Question No. 1 is compulsory.

- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.
- Q.1 Write short notes on: (Any four)
 - a. General statements of second law of thermodynamics
 - b. Show that $C_p C_v = R$ for an ideal gas.
 - c. Derive fundamental property relations.
 - d. Explain how fugacity of a pure gas is calculated using compressibility factor.
 - e. The coefficient of compressibility & β of mercury at 273 K and 1 bar arc 3.9 X 10⁻⁶ bar⁻¹ and 1.8 X 10⁻⁴ K⁻¹ respectively. Calculate C_v of mercury given that $C_p = 0.14$ kJ/KgK.

Density (p) = $13.596 \times 10^3 \text{ Kg/m}^3$

- Q.2 a. Explain the following:
 - (i) Phase rule
 - (ii) Intensive & extensive properties
 - (iii) Open, closed & isolated system
 - (iv) Path & state function
 - (v) Homogenous & heterogeneous system
 - b. Find the second and third virial coefficient of Van der Waal's equation when 10 expressed in form $Z = PV/RT = 1 + B/V + C/V^2 + D/V^3$
- Q.3 a. Water at 368 K is pumped from a storage tank at the rate of 25m³/hr. The motor for the pump supplies work at a rate of 2 hp. The water passes through a heat exchanger where it gives up heat at the rate of 42000 kJ/min and is delivered to a second storage tank at an elevation of 20 m above the first tank. What is the temperature of water delivered to the second storage tank? Assume that enthalpy of water is zero at 273 K and specific heat of water is constant at 42 kJ/KgK.
 - b. The fugacity of component 1 in a binary liquid mixture at 298 K & 20 bar is:

 $\overline{f_1} = 50x_1 - 80x_1^2 + 40x_1^3$

where f_1 is in bar and x_1 is mole fraction of component 1. Determine:

- (i) fugacity of pure component 1
- (ii) fugacity coefficient of pure component 1
- (iii) Henry's law constant
- (iv) Activity coefficient.
- c. A gas mixture containing 3 mol CO₂, 5 mol H₂ and 1 mol water is undergoing the 5 tollowing reactions:
 - (i) $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$
 - (ii) $CO_2 + H_2 \rightarrow CO + H_2O$

Develop expressions for the mole fractions of the species in terms of the extent of reactions.

[P.T.O]

10

TE/C/CBGS/BT/TBE Q.P. Code: 5671

Q.4		Derive expression for phase equilibrium in a single component system. Write a note on thermodynamic diagrams.	1
Q.5	`a.	The azeotrope of ethanol-benzene system has a composition of 44.8% (mol)	1

ethanol with a boiling point of 341.4 K at 101.3 kPa. At this temperature, the vapour pressure of benzene is 68.9 kPa and the vapour pressure of ethanol is 67.4 kPa. What are the activity coefficients in a solution containing 10% alcohol?

b. What is the criterion for chemical reaction equilibrium? Derive relationship between equilibrium constant & standard free energy change.

Derive expression for Lewis-Randall rule. Under which conditions is it valid? Q.6 Derive Gibbs-Helmholtz equation.

c. Using Redlich-Kwong equation calculate the pressure of 0.5 Kg gaseous ammonia contained in a vessel of 0.03m3 at constant temperature of 338 K. The critical temperature and pressure is 405.5 K & 112.8 bar respectively.