TE SEMY CBSGS BT BAT

19/12/16

12

8

10

10

Bioreactor Analysis & Technology

Q.P. Code: 569302

(3 HOURS)

(MAX. MARKS: 80)

Ouestion No. 1 is compulsory.

2. Attempt any three questions out of remaining five questions.

3. Assume suitable data wherever necessary.

4. Figures to right indicate full marks.

Answer the following (Any four)

- a. Discuss the advantages and disadvantages of Batch reactor
- b. Explain the temperature dependency of rate constant.
- c. What are the reasons of non-ideality of flow reactor? Define RTD.
- d. Derive Monod's equation.

0.3

- e. Differentiate between intrinsic and overall biochemical reaction rate.
- a. A homogeneous liquid phase reaction, with the stoichiometry and kinetics $A \rightarrow S$, $-r_A = kC_A^2$ takes place in amixed flow reactor and results in 50% conversion.
 - Find conversion if this reactor is replaced by another MFR having volume 6 times that of the original reactor- all else remain unchanged.
 - Find the conversion if the original reactor is replaced by a PFR of the same size- all else remain unchanged.
 - Explain the integral method of analysis of data.
 - a. Describe the kinetics of substrate uptake in cell culture with product formation.
 - b. A Gas phase decomposition of A is carried out in a MFR. The stoichiometry of the decomposition is $A \rightarrow R + S$. The initial concentration of A C_{A0} is 0.003 mol/l. The following data are obtained by conducting various runs using $C_{A0} = 0.003$ mol/l.

F	Local	0.4	5	14	45	193	
V	τ (sec)	0.2	0.6	0.76	0.90	0.97	
1	XA						

Find a rate equation for this decomposition.

TURN OVER

15

5

10

- A Dilute aqueous solution of acetic anhydride is to be hydrolysed at 25°C with $-r_A = 0.158C_A$ & $V_0 = 500$ cm³/min of solution with anhydride 0.4 concentration of C_{A0}= 1.5 x 10⁻⁴ gmol/cm³. There are total 3 reactors. Two of size 2.5 lit each and one of 5 lit. For getting higher conversion which alternative will be better.
 - One 5 lit reactor used as steady flow tank reactor i).
 - Two 2.5 lit used in series ii)
 - Two 2.5 lit were operated in parallel with equal feed rate of 250 iii) cm³/min in each
 - Compare the conversions obtained in (i) and (ii) with that of tubular iv) reactor of 5 lit capacity.
 - Explain the significance of heterogeneous reactions in bioprocessing.
- The effluent concentration is measured as a function of time for a pulse input into Q.5 a closed vessel. The results are tabulated below:

Time (min)	0	5	10	15	20	25	30	35
C _{pulse} (gm/l)	0	3	5	5	4	2	1	0

This vessel is to be used as a reactor for the decomposition of liquid reactant. The stoichiometry of decomposition is A -> S. The decomposition is first order with k= 0.307 min'l. Estimate the fraction of reactant unconverted in the real reactor and compare this with the fraction unconverted in a PFR.

- Explain space time and space velocity. b.
- Explain diagnosing ills of operating flow reactors. C.
- Write a note on (Any four) 0.6
 - Hallow fiber bioreactor
 - Michaelic-Menten kinetics b.
 - Stepwise series reaction C.
 - Non-growth associated products d.
 - Concentration profile for zero order kinetics in heterogeneous reactions e.