To Eo-V- Sem-Biotedanology Bioreactor Analysis & Telahnology

TEMICEGS/BT/BAT

QP Code: 5752

(3 HOURS)

(MAX. MARKS: 80)

Note:

- Question No. 1 is compulsory.
- Attempt any three questions out of remaining five questions.
- Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.

Answer the following

- a. Differentiate between elementary and non-elementary reactions.
- b. What is Arrhenius law? Explain how is rate of reaction is dependent on temperature?
- c. If pyrolysis of ethane proceeds with an activation energy of about 300kJ/mol how much faster is the decomposition at 650°C than at 500°C?
- d. Define rate of reaction, order and molecularity of reaction.
- Q.2 a. Liquid A is decomposed to 50% in 10 min. Find the time required for 80% conversion when the reactor obeys;
 - i) first order kinetics
 - ii) second order kinetics.
 - b. Derive the equation for concentration profile of first order reaction using a spherical biocatalyst.
- Q.3 a. Derive the model equation for cell culture for fed batch reactor.
 - b. At room temperature sucrose is hydrolyzed by the catalytic action of the enzyme sucrose as follows:

Sucrose Products

Starting with a sucrose concentration $C_{A0} = 1.0$ millimol/lit and an enzyme concentration CEO = 0.01 millimol/lit, the following kinetic data are obtained in a batch reactor (Concentrations calculated from optical rotation measurements):

C _A , millimol/ lit	0.84	0.68	0.53	0.33	0.27	0.16	0.09	0.04	0.018	0.006	0.0025
t, hr	1.	2	3	4	5	6	7	8	9	10	11

[P.T.O.]

10

12

10

10

10

10.

20

Determine whether these data can be reasonably fitted by a kinetic equation of the Michaelis-Menten type, or $-r_A = \frac{k_3 C_A C_{E0}}{C_A + C_M}$

Where $C_M = Michaelis$ constant. If the fit is reasonable, evaluate the constants k_3 and C_M . Solve by the integral method.

- Q.4a. Explain the step by step method of differential method of interpretation of batch reaction data.

t (sec)	780	2080	3540	7200	
x _A (%)	11.2	25.7	36.7	55.2	

Find the reaction rate constant and the order of reaction. Determine the time required for 50% conversion of A. Assume $C_{A0} = 0.05$ mol/lit.

- - b. Derive dispersion model for non-ideal reactors.
- Q.6 Write a note on (Any four)
 - a. Series and parallel reactions
 - b. Effectiveness factor and Thiele modulus
 - c. Perfusion reactor
 - d. E curve, F curve and C curve for non-ideal reactors
 - e. Air lift reactor