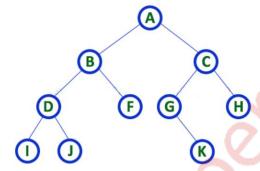
		$(2\frac{1}{2})$	Hours)	[Total Marks: 75	
	 N.B. 1) All questions are compulsory. 2) Figures to the right indicate mar 3) Draw suitable diagrams and illu 4) Mixing of sub-questions is not a 	stration	•		
Q. 1	Attempt All the Questions				
A)	Choose the correct alternative				(5M)
i)	Time taken by a known algorithm to solve a problem with worse case input gives us the bound				(3141)
	a) lower	b)	upper		
	c) both lower and upper	d)	None of these		
ii)	is an unambiguous specification of how to solve a class of problems.				
,	a) program		instruction		
	c) algorithm	d)	none of these		
iii)	BST is the abbreviation for				
111)	a) Binary Search Tree	b)	Binary Search Time		
	c) Binary Solution Technique	,	None of these		
	-	,			
iv)	The matching algorithm on a sequence of				
	a) <i>O(nlogn)</i>		O(n)		
	c) $O(logn)$	d)	O(2n)		
v)	A path that starts and ends on the same vertex is called				
	a) cycle	b)	tree		
	c) spanning tree	d)	none of these		
B)	Fill in the blanks(rapidly, longest, sho	ortest, s	slowly, child, parent, tree,	linked-list)	(5M)
i)	Leaf nodes represent the nodes that do no		• • • • • • • • • • • • • • • • • • • •	,	` ,
ii)	Pre-order and Post-order traversals are operations associated with data structure.				
iii)	Prim's algorithm is an example of path problem.				
iv)	The sequential search runs in time.				
v)	The n-log-n function grow a little more _	th	an the linear function.		
C)	Explain the following terms in one or	two lin	es		(5M)
i)	Big-Omega				
ii)	Depth-first traversal				
iii)	Linear search				
iv)	Binary tree				
v)	Selection algorithms				
Q.2	Attempt the following: (Any THREE)				(15M)
A	What is Asymptotic analysis of an algori	ithm? E	Explain.		

3150F6F44EE3EDBAC04E1D1C55B2377B

Page **1** of **2**

66341


Paper / Subject Code: 78901 / Fundamentals of Algotrithm

- B What is divide-and -conquer method of problem solving? Given an example where this method is used.
- C Write a note on method of guessing and confirming.
- D Write the algorithm for printing lines of a file in reverse order.
- E Write a note on commonly used logarithms and summations in algorithmic analysis.
- F Explain how to compare algorithms. Give example.

Q.3 Attempt the following: (Any THREE)

(15M)

- A What is an AVL tree? Explain its characteristics.
- B What is a traversal of a tree? Compute any two such traversals for the following tree.

- C Briefly describe the concept of topological sorting. Give example.
- D Explain with suitable example the adjacency list and adjacency matrix representations of a graph. Give example.
- E What is a shortest path problem? Explain any one algorithm for finding shortest path in a graph.
- F Define graph. Differentiate between directed and undirected graph. Give examples.

Q.4 Attempt the following: (Any THREE)

(15M)

- A What is breadth-first traversal of a tree? Give the algorithm for performing a breadth-first traversal on a tree.
- B Write a note on algorithm design techniques.
- C Briefly explain the Longest Common Subsequence problem.
- D Explain any two problems that can be solved using dynamic programming.
- E What are the elements of greedy algorithm? Explain.
- F Explain the concept of Classification by Implementation Method.

Q.5 Attempt the following: (Any THREE)

(15M)

- A Write a note on median-of-median algorithm.
- B Explain the structure of threaded binary tree? Give suitable example to illustrate the concept.
- C Define algorithm. State its essential characteristics.
- D Write a note on Master theorem. Give example.
- E Write a note on partition based selection algorithms.
- F Write a note on upper and lower bounds of algorithm.

66341 Page **2** of **2**