Q.P. Code: 538301

(3 Hours)

[Total Marks: 80

- (2) Attempt any three questions out of the remaining five questions.
- (3) Figures to right indicate full marks.

1 a) Evaluate
$$\int (z^2 + 2z)dz$$
 along the circle $x^2 + y^2 = 1$ (5)

- b) Evaluate the integral using Laplace Transform $\int_{0}^{\infty} e^{-t} \left(t\sqrt{1+\sin t}\right) dt$ (5)
- c) Determine the analytic function whose real part is $u = -r \sin 3\theta$. (5)
- d) A rod of length 1 has its ends A and B kept at 0 C and 100°C respectively until steady state conditions prevail. If the temperature at B is reduced suddenly to 0°C and kept so while that of A is maintained. Find the temperature u(x,t) at a distance from A and at time t.

2 a) Find complex form of Fourier series of
$$f(x) = e^{2x}$$
 in (0,2) (6)

- b) Find the orthogonal trajectory of the family of curves given by $2x x^3 + 3xy^2 = a$ (6)
- c) Using Bender Schmidt method solve $\frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t} = 0$ subject to the conditions u(0,t) = 0, u(1,t) = 0, $u(x,0) = \sin \pi x$, $0 \le x \le 1$.

 Assume h=0.2

3 a) Find k such that
$$\frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}(\frac{kx}{y})$$
 is analytic (6)

- b) Evaluate $\int_{C} \frac{1}{(z^3 1)^2} dz \quad \text{where C is the circle } |z 1| = 1$ (6)
- c) Show that the set of functions $\left\{Sin\left(\frac{\pi x}{2L}\right), Sin\left(\frac{3\pi x}{2L}\right), Sin\left(\frac{5\pi x}{2L}\right), \ldots\right\}$ (8) forms an orthogonal set over the interval [0, L]. Construct corresponding orthonormal set.

(6)

$$f(t) = \begin{cases} \sin 2t \ , \ 0 < t < \frac{\pi}{2} \\ 0 \ , \qquad \frac{\pi}{2} < t < \pi \end{cases}$$
 $f(t) = (t + \pi)$

b) Find half range sine series for
$$x \sin x$$
 in $(0, \pi)$ (6)

c) Expand
$$f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$$
 around $z = 1$ (8)

5 a) Using residue theorem evaluate
$$\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz$$
 where C is $|z| = 4$

b) Find Fourier expansion of
$$f(x) = x + x^2$$
 in $(-\pi, \pi)$ and (6) $f(x + 2\pi) = f(x)$

c) Find i)
$$L(e^{-4t} \int_{0}^{t} u \sin 3u du)$$
 ii) $L^{-1} \left(\frac{1}{s} \log 1 + \frac{1}{s^{2}}\right)$ (8)

Show that the function $w = \frac{4}{z}$ transform the straight lines x = c in the z-plane into circles in the w-plane.

b) Solve using Laplace Transform
$$\bar{R} \frac{\partial Q}{\partial t} + \frac{Q}{c} = V$$
, $Q = 0$ when $t = 0$ (6)

c) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the following data by successive iterations (Calculate first two iterations)

50	8.7	12.1	12.8	9.0
Jc.	u_7	u_8	u ₉	17.0
0	u4	<i>u</i> ₅	<i>u</i> ₆	21.0
0	u_1	<i>u</i> ₂	u_3	21.9
0	11.1	17.0	19.7	18.6